LINC COMPUTER USER-INTERACTIVE
PROGRAMS AND MACRO INSTRUCTIONS

Walter E. Reynolds Timothy B. Coburn
Robert B. Tucker James C. Bridges
Technical Report No. IRL-1055 May 1, 1967

Prepared under:

National Aeronautics and Space Administration
Grant NsG 81-60
National Institutes of Health
Grant FR 00151
Air Force Office of Scientific Research

Contract AF 49(638)-1599

Principal Investigator: J. Lederberg

Director, Instrumentation Research Laboratory: FE. Levinthal

Instrumentation Research Laboratory, Department of Genetics
Stanford University School of Medicine

Palo Alto, California

wh

ABSTRACT

This report describes four program packages for use on the LINC
computer.

(1) A program package which enables the LINC and a Teletype to be
used as a very sophisticated desk calculator including graphical output

with a Calcomp plotter.

(2) A general purpose double precision floating point subroutine

package for the LINC.

(3) A set of input-output routines providing for the communication

of octal, decimal and alphanumeric information via a Teletype.

(4) Also included is additional information on the LOSS system (see
"An Operating System for the LINC Computer,' R. K. Moore, NASA Technical
Report No. IRL-1038) under which the above packages may be used.

ii

ot N

II.

II1I.

Iv.

TABLE OF CONTENTS

Introduction
Calculator III

Data Storage and Memory Allocation
Stack Operations

Vector Operations

Block Operations

Calcomp Routines

Chi-Square - N by N

Mean and Standard Deviation

0w N O s NN -

"Student's' (Fisher's) T-Test

Floating Point Routines

Background

. Codes and Operations
. The Floating Point Format
Method of Operation

. Timing

S W N

Parameters and Use

Subroutines Suitable for Question-Answer
Programming of the LINC Computer
READCHAR

DECOCT

DBLDECOCT

OCTALIN

ALNUMIN

TYPECHAR

OCTDEC

DBLOCTDEC

e ~N N 0B LN
.

iii

Page No.

14
15
16
18
18

22

22
22
23
24

25

37

39
41
43
46
48
50
52
54

9. OCTALOUT
10. ALNUMOUT
11. ENDLINE
V. The LOSS System
1. The LOSS Program Stack and Its Index
2. Monitor
3. DEFINE and the Data Tape
4. EDIT
5. LASS
6. Updating the Program Stack Index
7. Non-LOSS Structured Data Tapes
Appendix A
Appendix B
Bibliography

iv

57
59
61

65

65
66
67
69
71
77
78

81
87

90

o

I. INTRODUCTION

During the last two years the LINC Programming Group of the
Genetics Department, Stanford University School of Medicine, has
written numerous LINC programs for use by the biological researchers
of the department. Heavy emphasis has been placed upon providing for
conversational input-output between the user and the computer. Thus
the researcher, by means of a Teletype, can interact with his program
and any instrumentation which may be on line with the computer. The
three program packages described in this report have been particularly
useful in handling the above applications. It is because of their
flexibility and usefulness that they are herein reported for the use

of other interested LINC users.

As with any piece of computer software, these packages are some-
what dependent upon the configuration of the input-output interfaces.
The pertinent aspects of these interfaces are described in detail in
the appendices of the report. A prospective user is urged to check his
configuration against that given, If a difference exists it usually
can be accommodated by judicious changes of a few instructions (OPR's,
SXL's, ATR's, etc.) in the programs. The likely places where changes

may be needed are indicated in the individual program descriptions.

The first program described, CALCULATOR III, is a complete pro-
gram that enables the LINC and a Teletype to perform in a manner quite
comparable to the most sophisticated electronic calculators on the
market today. In addition, vector or single dimension array operations
are included, direct communication with data blocks on LINC tape is
permitted, and if a Calcomp plotter is available, output may be

graphically displayed.

The second package is a set of floating-point routines. They
also exist in CALCULATOR III, but here in a form more suitable for
inclusion in any LINC program where double-precision floating-point

arithmetic is desired. They occupy two quarters of LINC memory and

when so included, become a comprehensive set of floating point macro

instructions.

The third package contains numerous general purpose routines in
source code form invaluable to any LINC program where conversational
input-output is desired. These may be inserted into LINC programs as
desired to allow octal, decimal or alphanumeric communication with the

LINC using a Model 33 Teletype in half-duplex mode.

These packages are presently utilized under the LOSS system, a

general description of which is contained in Section V of this report.

Magnetic tape copies of CALCULATOR III, the floating point rou-
tines, and the source coding (in LOSS) of the input-output routines will
be supplied upon request to any interested user. These will be placed

upon a LINC tape along with the LOSS monitor (see Section V).

Users wishing such a copy are requested to send a marked LINC

tape with their request to:

LINC Programming Group

Instrumentation Research Laboratory
Genetics Department

Stanford University School of Medicine
Palo Alto, California 94304

II. CALCULATOR III

The calculator program was designed and written to allow use of
the LINC for calculations and simple statistics without special pro-
gramming for each user. Calculator I contained all the features of a
desk calculator plus some basic functions; sine, cosine, square root,
etc. With the addition in 1964 of 1024 words of memory, Calculator I
was expanded to handle lists of data (one-dimensional arrays) and
renamed Calculator II, 1In 1966, Calculator II was rewritten to incor-
porate more complicated statistical routines and more extensive input-
output functions; this is Calculator III. At present, new routines
are still being added but no changes in the structure of the program

are foreseen.

Calculator III is organized in a fashion acceptable to non-
computer personnel. It has been found that after 10 minutes of
instruction, the program can be used by persons with no previous know-
ledge of the LINC or digital computers. More efficient use can be made
by more experienced operators. Due to the variety of users, the
following users guide may be either too explicit or too general.

Additional documentation is available.

A variety of operations are available in the calculator. These

are listed below for reference.

A Add 0] Reverse

S Subtract I Set Pointer

D Divide N Print Fixed

M Multiply P Print Floating
STACK E Exponential Q Square Root

L Log (natural) R Read

K Arctan W Write

G Sine X Type Pointer

H Cosine Z Chi Square

CL Plot Line

CALCOMP CP Plot Point

BA Block Add

BS Block Subtract
BLOCK BM Block Multiply

BD Block Divide
BR Block Read
BW Block Write

VA Vector Add
Vs Vector Subtract
VD Vector Divide
VM Vector Multiply
VE Vector Exponential
VL Vector Log
VK Vector Arctan
vG Vector Sine
VECTOR VH Vector Cosine
Vi Fill Vector
VN Vector Print Fixed
\'2 4 Vector Print Floating
vQ Vector Square Root
VU Mean and Standard Deviation
VT "Student's'" T-Test
VF Sum
vJ Product

The methods for using these operations are described in the fol-
lowing pages. The method for input of data (not mentioned above) in-
volves the use of a pointer and stack. Hence, it seems worthwhile to

describe first the pertinent features of memory allocation and data

storage.

1. Data Storage and Memory Allocation

A. The upper half of memory is used for data. Location 2000
through 3734 (17348 12 bit words) function as a stack or list. Since
double precision floating point arithmetic is used (three 12 bit words
per stack cell), there are 329 stack cells available. These are
numbered from O to 328. Stack cell 1 corresponds to location 2003,
2004, and 2005; and so forth.

The addressing of the stack cells is handled by a pointer for
the operations listed as ''stack operations' on the previous page. For
example: set the pointer to stack cell 17 by command "I18;". Type in
an integer "349;". The pointer increments itself and directs the in-
teger into stack cell 18. The next integer, "638;'", will be placed in
stack cell 19.

The pointer location is 3761. This 12 bit word contains the
number of the stack cell at which the pointer is looking. In the
above example it would contain 18. Locations 3762 through 3777 are
used as an input buffer. All characters typed in are stored here

until the semicolon is struck.

Locations 3735 through 3760 contain vector definitionms.
Vectors are merely lists within the stack. They can be defined by the
user and subsequently used by number. For example: a vector may be
defined as a list starting in stack cell 20 and consisting of the 50
consecutive stack cells. The use of these 'vectors' will be explained

in Section 3.

B. The lower half of memory is used for the program. In general,
the first two quarters, 0 and 1, are used for the various control
routines, while quarters 2 and 3 contain the floating point routines.
Since these latter quarters are used by almost all the control routines,

they are always present in core.

C. Diagram of Upper Half of Memory

2000
| DATA

3734
3735

. | VECTOR DEFINITIONS
3760
3761 — POINTER
3762

. | 1INPUT BUFFER
3777

D.

Diagram of Tape Storage

BLOCK 100
101

102
103

74
75
76
77

104
105
106
107

73
70
71
72

110

133

2. Stack Operations

F STACK CONTROL AND ARITHMETIC

l FLOATING POINT PACKAGE

~ VECTOR CONTROL AND ARITHMETIC

= PRINTOUT AND FUNCTION SUBROUTINES

— BLOCK COMMANDS

- CALCOMP COMMANDS

— STATISTICAL ROUTINES AND TABLES

The eighteen operations listed in this group have one consistent

similarity; they are called with a single letter. In addition, most

of them refer to the pointer for their data values, and most of them

carry out one operation per command.

A.

B.

Pointer Contro

1

Ibbb;

X3
Data Input

+329.56;

Set the pointer for input into bbb. This
actually sets it at bbb-1.
Type the value of the pointer.

Increment pointer and store 3.2956 x 102

in the appropriate stack cell.

-«

-1.5,-99; Increment pointer and store -1.5 x 10_99

in the stack cell.

7;: Most data looks like this.

NOTE: Spaces are not allowed within a command. Errors, when
detected, cause immediate exit from the requested routine and NIX is
typed out.

Exponents are allowed from 10_99 to 10+99. Larger exponents

are not typed out correctly although they are correct in memory.

Eight significant digits can be stored in 24 bits. Typing

in more than 8 is meaningless.
C. Data Output

Nbbb Type in fixed point a four digit number found
in cell bbb.

Pbbb; Type in floating point form the six most sig-
nificant digits and the exponent of cell bbb.

These two operations may be strung together in the form P1,2,

3,4,100; "Print stack cells 1,2,3,4, and 100".

D. Arithmetic Routines

Xn Represents the stack cell with the pointer.
xn—l Represents the stack cell preceding the pointer.
—_—> Indicates that the left side replaces the right.
A; X +X—> X Pointer decremented to X
n-1 "n n-1 n-1
S: X -X —»X Pointer decremented to X
n-1 "n n-1 n-1
M; (Xn_l)-(Xn)—>Xn_1 Pointer decremented to Xn—l
D; X /X —aX Pointer decremented to X
n-1"""n n-1 n-1

Note the position of the operands in the subtract and divide.
Because these operations are not symmetrical the following operation

has been included:

0; Xn— ;)&l i.e., reverse the last two locations.
The arithmetic operations perform as a 'fold down stack." See

examples at end of Section II.

E. Functions

L; loge xﬁ-—-5>xn Pointer unchanged
E; eXE—B'Xn Pointer unchanged
Q; Xﬂ—€> Xn Pointer unchanged
G; Sin x54>-xn Pointer unchanged
H; Cos Xn% Xn Pointer changed

K; Arctan xﬁ—e-xn Pointer unchanged

F. Miscellaneous

W; Write upper memory into blocks 114-117.
R; Read upper memory from blocks 114-117.
Zm,n; See statistical routines-Chi square.

G. Examples of Operations Using the Stack

(1) <§.l + 35.7 _;) x 22.4 Evaluate

2.3
10; Set pointer to cell-l
1.1; Put 1.1 into cell O
35.7; Put 35.7 into cell 1
A; Add and store in cell O

2.3; Put 2.3 into cell 1

\ D; Divide into previous sum and store in cell 0
1; Put 1 into cell 1
S; Subtract from previous quotient store cell 0
22.4; Put 22.4 into cell 1
M; Multiply times cell O and store
P; Print the value at the pointer. (PQ would

have the same result since the pointer is at

cell 0.)
1
(2) Evaluate {(1x2x3x4x5x%6)

120; Set pointer to cell 19
1; Put 1 in cell 20
2; Put 2 in cell 21
3; Put 3 in cell 22
43 Put 4 in cell 23
5; Put 5 in cell 24
6; Put 6 in cell 25
m; Multiply 6 x 5 store in cell 24
m; Multiply 30 x 4 store in cell 23
m; Multiply 120 x 3 store in cell 22
m; Multiply 360 x 2 store in cell 21
m; Multiply 770 x 1 store in cell 20
I; Put 1 in cell 21
0; Reverse cell 21 and 20
D; Divide 1 by 720 store in cell 20
P; Print result (P20 would also print the result)

3. Vector Operations

A vector is a one-dimensional array or list with a beginning point

and a length. In terms of the stack concept, a vector is a defined

subset of the stack. That is, the stack might be defined as a vector

starting at O with a length of 329 cells. Another vector might start
at cell 20 with a length of 10 cells, and so forth. The use of these
vectors will become more apparent in the examples below. The following

operations can be performed with vectors.

A. Defining a Vector

The user is allowed to define the vectors he chooses to use.

For simplicity vector names are the digits 0 to 9.

Vi, 10, 50: Define vector 1, starting in cell 10 with
length of 50 cells, i.e., cells 10-59.

V9, 2, 20: Define vector 9, starting in cell 2 with
length of 20 cells, i.e., cells 2-21.

The fact that vector 1 and 9 are overlapping is inconsequential.

B. Vector Arithmetic

VAl, 2, 3: Add the first cell of vector 1 to the first
cell of vector 2, store in the first cell of

vector 3 and continue with each succeeding

element.
vs1, 2, 3: Subtract vector 2 from vector 1, store in 3.
VM1, 2, 3: Multiply vector 1 by 2, store in 3. ‘
vbil, 2, 3: Divide 1 by 2, store in 3.

(1) 1If vector 2 (or 1) is shorter than 1, the operation will
loop back to the beginning. The longer vector must be satisfied

before the operation terminates.

(2) 1f the storage vector (vector 3) is too short an error

message is typed out.

(3) If less than three vectors are specified in an operation,

the last one or two will be assumed.

VM3: Multiply 3 by 3, store in 3, i.e., square it.

10

C. Vector Functions

vQl, 3: Square root of each element in vector 1 is

stored in vector 3.
VE, VL, VG, VH, VK are similar.

D. Vector Output

VP1l, 4, 5: Print vectors 1, 4 and 5 in three columns.

VN5, 4, 1: Print fixed 5, 4, and 1 in three columns.

E. Miscellaneous

VI3: Fill vector 3 with an arithmetic series; the
starting number is in the first cell of
vector 3; the increment in second cell.

VF1, bbb: Compute the sum of the cells in vector 1,
store the result in cell bbb.

VJ1, bbb: Compute the product of the cells in vector 1,

store result in cell bbb.
(1) Sense switch 0 causes exit from the print routines.

(2) When printing in floating form, a maximum of 5 vectors
can be printed since this fills the teletype page. The corresponding

maximum for the fixed form is 9.

(3) Vectors must be defined before they are used. The cal-
culator prints NIX if an undefined vector is requested. However,
since vectors remain defined after use, it is more likely that one
forgets to redefine a vector. This may or may not cause an error
message. The calculator doesn't know if you meant to redefine a

vector except when it is too small for storage.

F. Examples Using Vectors

. / X
(1) Evaluate 3.5 *%ig——- for X from 1 to 100
X“=4.62

11

vl, 0, 100;

Vi1,

v2, 100, 100;

VM1, 1, 2;
VEL;

1200;

1;

v3, 200, 1;
VAL, 2, 1;
1200;
4.62;

vs2, 3, 2;
vbl, 2;
V02,

1200;

3.5;

w3, 2;
VP2;

(2) Evaluate

10;

(Xl);
(Xz);
(Yl);
(Yz);

W;

v1,0,50,2,50,50,3,100,50;

Define vector 1.

Set pointer to -1,

Put 1 in cell O.

Put 1 in cell 1.

Fill vector 1 with the digits 1-100.
Define vector 2.

Square vector 1, store in 2.
Exponential of vector 1, store in 1.
Set pointer to 199.

Put 1 in cell 200.

Define vector 3.

Add the value 1 to vector 1, store in 1.
Set pointer to 199.

Put 4.62 in 200.

Subtract from vector 2, store in 2.
Divide vector 1 by 2, store in 2.
Square root of 2.

Set pointer to 199.

Put 3.5 in 200.

Multiply times vector 2.

Print vector 2.

\V[_ngz - v) Where x and y each have

in (3.6-x) 50 values to be typed in.

Set pointer to O.

Input X values.

Input Y wvalues.

Write on tape in case of blunder.

Define vectors 1, 2, and 3.
Set pointer to 149.

Put 3.6 in cell 150.

12

PL ¢

V4,

150, 1;

VSsi, 4, 3;
VG3;

VM1

VS1, 2;
vb3,2;
VF2, 300;
1301;

Q;
P;

(3)

or P300;

Evaluate

1100;

b4
2

A;
1;
0;
D
Q

-
3

.33

-1.9;

€,

NH

35.

From the examples above, it should be clear that the pointer takes care

of itself

in most cases.

Define vector 4.

Subtract vector 1 from 4, store in 3.
Sine of vector 3.

Square vector 1.

Subtract vector 2 from 1, store in 2.
Divide vector 3 by 2, store in 2.

Sum vector 2, store in cell 300.

Set pointer to 300.

Square root.

Print.

1/2
1 -1.9
35.5 —<gj:7?:£> X e

Set pointer at 99.

Put 4 in 100.

Put 2.3 in 101.

Add and store in 100.

Put 1 in 101.

Reverse.

Divide 1 by 6.3, store in 100.
Square root of wvalue in 100.

Put -1.9 in 101.

Exponential of 101.

Multiply times 100, store in 100.
Put 35.5 in 101.

Reverse.

Subtract 101 from 100, store in 100.
(P100 would also print the

Print result.

result.)

It obeys a fairly logical set of rules,

which, with a little practice can be relegated to a subconscious

corner of the human memory.

13

Subtotals may be printed out at any time with no effect on the data
stores in those cells. Data is not destroyed by re-reading the system.
Hence, one is free to try any configuration of commands which seem
logical. At worst they will cause the program to halt. The read on
tape (R) and write on tape (W) instructions are for the preservation

of long data lists. 1If one fears that an operation may alter
irreparably the data they have arduously typed in, W; will keep all
data, the pointer, and the vector definitions on tape. After executing
R; the calculator system will be in precisely the same configuration

as it was before the last W.

4., Block Operations

The block operations provide input-output between the calculator
and Linc tape. They operate on stack cells 0-255 for both input and
output.

BRd,x; Read block x, unit d into quarter l; convert
each 12 bit word to double precision floating
point and store sequentially in stack cells
0 through 255.

BWd ,x; Fix each double precision floating point word
in cells 0-255, write on tape block x, unit d.

*BAd,xl,xz,x3; Read block X5 unit d into quarter 1; add
each value to the corresponding stack cell;

continue for xz, x3, etc.

*BSd ,x; Subtract block x, unit d from stack cells
0-255. \

*BMd,x; Multiply block x, unit d times stack cells
0-255.

*BDd ,x ; Divide block x, unit d into stack cells
0-255.

*More than one block may be specified, as in the above block add.
However, the limit on the number of characters in a teletype command

is 28. Therefore, the following command represents the maximum length

14

which will be correctly interpreted: BAl, 102, 103, 104, 105, 106,
107;.

5. Calcomp Routines

At present, the Calcomp routines provide a quick method of dumping
a string of data points. I have used them extensively for checking

out other routines such as log and sine.

Form of Command:

C s s s} The "C" refers to Calcomp.

(1) The first parameter is either "L" or "P" indicating a con-

nected line plot of an unconnected series of points.

(2) The second parameter designates the vector to be plotted. It

must be an integer from O to 9.

(3) The third parameter designates the symbol, if any, for each

point.

no symbol

0 ~N O LW N O
» +x Jop>0Oo

(4) The fourth parameter refers to the X dimension of the plot.

a. ,8, would produce a plot 8 inches lomng, or

b. ,15, would produce a plot in which each point was spaced

by 5 steps (100ths of an inch) on the X axis.

(5) The fifth parameter is exactly analogous to the fourth, but

it refers to the Y dimension.

15

NOTE: By specifying an integer, as in a, the plot is inde-
pendent of the absolute magnitude of the data. Specifying an incremented
factor, as in b, makes the plot absolutely dependent on the magnitude
of the data. At present, an integer can only specify inches, not parts

of an inch.

6. Chi Square-N by N

There are many chi square tests. The method used by this program

is taken from R. A. Fisher, Statistical Methods for Research Workers,

Chapter IV, (see bibliography). The following excerpt from this

chapter describes the use of this program.

"It should be noted that the methods employed in this chapter
are not designed to measure the degree of association between one
classification and another, but solely to test whether the observed
departures from independence are or are not of a magnitude ascribable

to chance."

Input

Data is entered starting in stack cell 0. It may be entered row

by row, or column by column.

‘Execute Command

"Zn,m;" where n is the number of rows and m is the number of
columns, assuming the data has been input row by row. Otherwise n is

the number of columns and m the number of rows.
Qutput

Three values are output:

(1) Degrees of freedom

(2) Chi square

(3) Probability of independence associated with the above. The
table used for computing the probability of independence is on the
following page (Table 1).

16

26g-0§ | zg6.L¥ | SLLEY | 9Sz.ob | oSzgf | ofS.EE | 9fE.62
ggS-6F | £69-9¥ | LSS.z¥ | Lgo-6f | 6£1-5¢ 19v-2¢ | 9t€-gz
glz-gh | 61§ | LECab | 916.LE | Lzob® 16€.1€ | off.lz
€96.9F | ob1-tb | €r1.0b 1¥l.9f z16.2¢ 61¢€-0¢ 9£€-9z
tbg-St | gSg-z¥ | Sgg-gf | €95.8¢ | S6L.1€ | obzb6z | ofE.Sz
vi€by | 99S-1v | 2S9.L€ zgf-b¢ | Slog-of zligz | LES-be
ogb-zb | olz-ob | Sib.gf | 961.€€ | €55.6z | gbo-lz | LEE.fz
g€9-1¥ | go6.g€ | zL1.8€ | loo-zf | 6zb-gz | gro-9z | LE€.zz
6gz-of | 659-LE | ¥z6.€€ | f1gof 10f-Lz 6£6.bz | LEE.1z
z€6.g€ | €¥€-9f | 1L9.2€ | Si19-6z | 1ligz | gSg€z | LE€.oz
99S-L€ | 0zo.S€ | orbaf | zivgz | gfo.Sz | Sll-zz | LEE-61
16195 | Lg9-€€ | ¥brof | boz.lz | 006.£z | 6g9-1z | gEE-gr
Sog-t€ | o¥€-z€ | 69g.gz | 6g6:Sz | ogl.zz 109-0z | gtt-l1
6ob.£€ | §66.0f | LgS-Lz | 69lvz | S19-12 11561 | gf€.91
coo-z§ | £€€9-6z | gbz.gz | z¥S€z | Sob-oz | gib-gr | gEE.Sr
gLS-0f | 6Sz-gz | 966-bz Lo€-zz 11€.61 zz€.L1 6¢€.b1
1v16z | €Lg-9z | Sg9-€z | ¥gorz | 1Sigr | zzz.gr | 6EE.Ex
g8g9-Lz | zL¥y.Sz | zgf-zz z1g-61 Sg6-91 611.51 obf.z1
Liz.gz | ¥So.vz | gzo.1z | 6¥S-gr [=zIig.Sy 110-b1 | off.1x
_SzL-bz | g1gzz | SLog-6r | Slz-Lr | 1f9-b1 | 66g-zxr | 1¥E.or
6oz-€z | 191-12 | Lof.gx1 Lg6-S1 zbb€1 1gl-11 z¥€-6
999-1z | 61961 | 616-91 Yg9-b1 zhz.z1 959-01 £ye.g
o6o-oz | gor-g1 | LoS-S1 | zgf-€1 | ofo-rr | ¥z56 rre-L
SLy.gr | zzg-91 | Llgo.b1 L1o-z1 fog-6 £g€-g 9o¥g-9
z1g.91 | £€0.S1 | 26S-z1 | Stg-o1 | gSS-g 1£2-4 gve.§
ggo-S1 | gg€-€1 | olorr | ¢fz6 6gz-L bgo-9 15€¥
LLz-€1 | g99-11 | gg¥b-6 6LL-L 6g6-S glg¥ LSE-€
StCar | LEg6 Sig-L 1529 z¥g-¥ $99-€ 99¢€-z
orz6 veg-L 166-5 Sog-¥ 612-€ gob-z 9g€-1
$€9-9 zib§ 1vg-€ gol-z zbg-1 tlo-1 SSb.
‘10 ‘zo So. ol *0z. ‘0. *05.

T 3749VL

goS-Sz | t9€-€z { 665.0¢ £6v-g1 9of-g1 £56.¥1| of
LLSvz | Sivzz | g9l-61 gol-L1 rLS.Sx 9Sz-b1| 62
Lvg-€z | ggS-1z | 6£6-g1 22691 Lyg-b1 S9S-€1} gz
orl-zz | fol-oz | VrrgI 15191 Szr-br 6lg-zr| Lz
z6l-1z | ozg-61 z6z-Lx 6L€.51 6ot €1 gb1-2z1| 9z
Lgg-oz | ot6.g1 | €LP-grx 119-b1 L6g-z1 vzSa1| Sz
£46.61 zgo-g1 | 6S9.S1 ghg-€1 26611 gSg-or| ¥z
1zo61 | Lgrlr | ghgba 160-€1 €6z-11 gbror| €z
101-¢1 b1€.91 1vo-b1 ge€.z1 009-01 zbS6 | zz
zg1-L1 Svv.S1 | obzfx 16611 §16.6 L6g-g | 12
99z-91 | gLS¥1 €vv.z1 15g-01 L€2-6 og9z-g | oz
z§€.51 | g1lfx 159-11 Lix-o1 LoS-g €€9-L | 61
obb-tr L8g.21 S9g-o1 06¢.6 906-L Sro-l | g1
1£5.€1 | zoo-z1 Sgo-or zlgg §Sz.L gov9 | L1
bzg-z1 ZS1-11 z1£-6 296-L Y19-9 z18-S | o1
1zlxx | lof.or L¥S.g 192-L $g6-S 6zz-S | St
12g-01 Lgh-6 o6L-L 1LS89 89¢-S ogg-¥ |- b1
926-6 ¥€9-8 zho.l z6g-S "Sol¥ Lo1v | £
¥€0-6 Log-4 vof-g 9zz-§ glidy 1LS-€ z1
ghi-g 6g6-9 gLS§ SLSY 609-¢ €S0 | 11
Logz-L 6L1-9 Sog-¥ ot6.¢ 6S0-¢ g8S-z | or
£6£-9 og€.§ g91-¥ Szg.€ z€S.z ggoz | 6
LzS.S 6S-¥ ob¥-£ ¢€l-z zfo-z oV9-1 8
1lg-¥ zzg-€ £€g-z Lo1.z ¥oS-1 6Sz.1 | L
gzg-¢ olo-g Yoz-z S€9a bE€1a zlg: 9
000-¢ ez 019-1 Stra zSL. ¥6S. S
S61-z 6¥9-1 Y90-1 11l- 6zb- L6z. 14
Yeb1 Soo-x ¥gS. zS¢- Sgr- Sir. €
€1l. o¥t. 112- for- Yobo. 10z0- z
gh1. z¥go-. gS1o0- £6€o00- 829000- LS1000- 1
_[‘0fe ‘og- *06- *56- *g6- 66-=g .

17

7. Mean and Standard Deviation

Example of use:
"yu 1, 300, 301;"

The above command computes the mean and standard deviation of the
values in vector 1. Leave mean in location 300, standard deviation in

301.

Mean = Lx
anz—gZ 22
Standard Deviation = X
n{n-1)

8. !'"'Student's''(Fisher's) T-Test

Example of use:
HVT l, 2;“

Using the values found in vectors 1 and 2, the routine computes
the appropriate T value (see next page), searches the probability
table (Table 2) for the corresponding P value, and types out T, P and
‘N.

The Student's T-Test is a measure of the significance between two
means. It is designed to take small populations into account, although

it works equally well for large populations.

The probability table consists of a stored matrix 28 by 12. If N
is 28 or greater, it is assumed to be infinity. Smaller values of
N each have 12 entries in the table. There is a slight discontinuity

between N of 27 and 28.

A large P value, i.e., a value approaching 1 indicates that the
means of the two populations are similar. A small P value, .05 or less,

represents a 95 percent probability that the means are different.

18

“t

The following explanation is taken from Fisher's Statistical

Methods for Research Workers, page 122 (see bibliography).

Comparison of Two Means

"In experimental work it is even more frequently necessary to test
whether two samples differ significantly in their means, or whether
they may be regarded as belonging to the same population. 1In the
latter case any difference in treatment which they may have received

will have shown no significant effect.

If X1 Xgs o ooy X + I and x'l, x'z, e e ey x'n + 1 be two
1 2
samples, the significance of the difference between their means may be

tested by calculating the following statistics:

> = I o _ I '
x = = S(x), x' = o+ 1 s(x"),
1 2
52 = L S(x - ;)2 + S(x' - ;')2
n,+n
1 2
o - _o (D@, + 1)
s n,+n. +2

172

n-= nl + n2

The means are calculated as usual; the standard deviation is
estimated by pooling the sums of squares from the two samples and
dividing by the total number of the degrees of freedom contributed by
them; if o were the true standard deviation, the variance of the
first mean would be ozﬂnl + I), of the second mean 02/(n2 + I), and
therefore that of the difference would be 02 I/(nl + I) + I/(n2 + I);
t 1is therefore found by dividing x — x' by its standard error as
estimated, and the error of the estimation is allowed for by entering

the table with n equal to the number of degrees of freedom available

19

for estimating s; that is n = n, + n,. It is thus possible to
extend "Student's'" treatment of the error of a mean to the comparison

of the means of two samples.”

20

ot

¢ I19vl

zgSLS-z |¥E€9zE.z | 96656-1 |Sghbg-1|SS1gz-1|E¥gLo.s | zg1bg. |6¥bLg- ob¥zS. z£5gE. S€ESz-|ggSzr-
0§%.z LS.z zbo-z L6g-1| o1f.x| SSo.k| ¥Sg €gg9- | ofS-| 6g€-| oSz.| Lzl
9SL-z zgb-z Svo.z 669-1 11€.1| SSo.x| ¥Sg. £g9- ofS.| 6gf.-| 9Sz-| Lez1.
£94.2 Lov.z gro-z ol-x| ‘€1€a| ogSo.rj SSg. £89- ofS.| 6gf.| 9Sz-| Lzr.
1Lz €Ltz zSo-z €ol-1| ¥if.r| LSo.r} SSg- ¥g9- 1€6. | “ 6g€- 1" 9S8z | LzI:
6.L-z 6Lz gSo-2z gol-t| Sif.a| gSo.r| o9Sg- ¥g9. 1£6.| o6f.| 9Sz.| Lzr-
Lgl-z Sgb.z 09o-2 gol-r| o9i1fx| gSo.r| 9Sg- ¥g9. 1£5.] o6f.| 9Sez.| Lezr-
tol-z zbb.z vgo-z rif-r| gifr| 6So.x| LSg- §g9- 1€S.] o6f.] oSz-| Lzr-
Logz | o00S-z 69o-z t1L1) 61€.1| ogo.1| gSg- Sgo- z€8.| obf.| 9Sz.| Lzi-
61g-2 goS-z vlo-z [1l1] 1281 190.1| gSg- 989+ z€5.| o6¢.| 9Sz.| Lzi.
1£g-2 g18-2z 0go-Z 1zl.r| €zf.1| €g9o0.1| 68g. 989- e€5.| 16€.| LSe.| ler-
Svg-z gzs.z 9g0-2 SzL.x} Szf€.x| Vgo.x| ogg- Lgo-. €¢5.1 16€.1 LSz.| [lz1.
198-2 6£S-z £60-z 6zl-1 gz€-1| go9o-1 198 889- £€6.| 16£.| LSz.| Lz1-
glg-z z§S.z 101-2 v€L.1} off.r| Lgo-x{ zog- 889+ €S, 26€.) LSz.| Lzl
g6g-2 tgS.z orr.z ovl.r| ¢€€€.1] 6go.x| €og- 629- $¢8.| e6€.| LSz.| geI-
126-2 £g5-z ozI-Z obL.x| LEC.1|. 1hox| So9g- 069. 6¢S.| z6¢.| gSz-| gezr-
Lt6-2 709z 1€1:2 €SL.1| “1¥€a| Ploax| o99g- 169. | 9f€S.| €6¢£.] 'gSz.| ger-
L6z ¥zg-z Sti-z 19l-r| S¥E-x| oglo.x| gog- z69. LES.| €6£.| gSz-| ger.
z10.¢ oS9.z 091-2 1LL.1| oS€a| 6lox| olg: 169. gfS. | ¥6f.(68z-{ geI-
. SSo.¢ 189-2 6L1-2 zgl-1| - 98€-1| €gox| Elg- S69. 6€S.| S6£.| 6Sz.| ge1-
gor1-¢ gil.z 1022 961 €9¢.1] ggo-r| 9Lg- L6g. obS.| 96¢-| ogz-| -6zI-
691-€ tgl.z gze-z zig-1| ‘zLfx| E6o.x| 6Lg- ool- e¥S.| L6E.| o9z-| 6z1-
oSz.¢ | 1282 z9z-z ¢€€g.r| ¢€gf-x| oorx| €gg €ol., | €¥S.| g6f.| 192-} 6zZI.
Ge¢.€ 96g-z gof-z ogg-1| L6E€.1| gorx| 6gg gol. gbS-| 66f.| zgz.| of1-
66b.€ g66.z Sqf-z S6g-1| Sivxf 611.1| 9bg- 11l. otS.| zo¥.| €gz.| ofr.
lol€ | €b1€ Lbb-z €46.1| obbaj PEr.ax| gob- g1l £€6S.| vob.| Sgz.| 1f1.
zfo-¥ Sgt.€ 1.5z Sto.z| 9lbvx| oSix| oz6- Lzl- 65S.| gob.| Lgz.| =zfr.
tog-¥ Lyl oll-z z€1.z| €€S.1| ob1.1| 1V6- 1vl- 69S.| tvib.| 1lez-| PEr.
1tg-S 1vS.p zgI-€ £6¢€.z} gf9-1| oSz.x| gl6. Sol. vgS.| vev.| Llz-| Lfr.
$z6-6 S96-9 fof-¥ ozb.z| 09gg-1 9gf-1 1go-I| QIg- Lig.| Sb¥.| 6gz.{ z¥r.
LS9€9| 1z2g1f| ogol-zr| vifg| glofl €g6.1! glf.r} ooor| Lzl o1§.| Sz£.| gSr1.
‘10 *z0- *So- 1. z- €. +. *Ge *g- L. ‘g 6-=d

- ANt WO N0

21

I1I. FLOATING POINT ROUTINES

1. Background

The present (1966) version of the floating point routines improves
on the past (1965) version in speed, accuracy, and operations. The
additional features which have been added are:

a. A round off procedure (used internally).

b. Inclusion of subtract integer and square root operatioas.

c. Direct entry, i.e., jump 1000.

The only incompatibility with the previous (1965) version is
contained in the direct entry. This can be remedied by either
eliminating the three instructions entry required in programs using the
old version or by merely changing the first four instructions in the

present floating point routines to: ADD 1445, STC 17, CLR, NOP.

Listing 2 at the end of this section shows the coding involved in

the routines themselves.

2. Codes and Operations

0. Sqrt Compute the square root of the value in

operand. Leave in FAC.

1. Cla Clear and add (load) operand into FAC.
2. Add Add operand to FAC.
3. Com Complement operand; leave in FAC.
4. Mul Multiply operand by FAC; result in FAC.
5. Fac/op Divide the Fac by the operand; result in Fac.
6. Op/Fac Divide the operand by the Fac; result in Fac.
7. I + Fac Add an integer operand to the FAC.
10. I x Fac Multiply an integer operand by the Fac.
11. Fac/1 Divide the Fac by an integer operand.
12. 1/Fac Divide an integer operand by the Fac.
13. Fix Convert Fac to an integer; leave in LINC
accumulator.
22

14. Float Convert an integer to a floating point word;

leave in Fac.

15. Cir Clear Fac and operand.

16. Max Compare size of operand with Fac; larger left
in Fac.

17. Min Compare size of operand with Fac; smaller left
in Fac.

20. Sgn Check the sign of the operand; depending on

whether it is positive,negative or zero,
leave in the LINC accumulator +1, -1 or zero.
21. Incr Add Fac to operand and store in operand; i.e.,

add to memory.

22. Sub Subtract operand from Fac; leave result in Fac.

23. Sto Store Fac in operand; also, leave in Fac.

24, Ssp Set sign of operand positive; leave in Fac.

25. Ssm Set sign of operand minus; leave in Fac.

26. Fac-1 Subtract integer operand from Fac. Result in
Fac.

3. The Floating Point Format

The use of double precision floating point arithmetic seems
essential if the LINC is to serve as a statistical processor. In using
this type of arithmetic, the programmer trades speed and space for ease
in dealing with large numbers. Programs which are extremely laborious
to write and debug may become rather trivial using these routines

(see mean and S.D. example).

A. Form of double precision floating point number:

Sign Sign bit12 bit o
\ - . . _
Exponent High Order Low Order
Mantissa

The number above represents the integer 5 after it has been floated.

23

B. Floating an integer involves shifting the number right across
the binary point until it is a fraction, and then counting the number
of shifts to make up the exponent. In the above case, 5 = 101.000 in
binary. Three shifts right produce 000.101. Since the binary point
is always located between bits 23 and 22, the floating point number
contains 101 in bits 22, 21 and 20. The exponent equals 3. Another

way of representing this binary number is .101 x 23.

C. Normalized floating point numbers always contain their most
significant bit in bit 22. The above number could be represented in
an unnormalized mode, such as .010 x 24. But it is never represented
this way in the floating point routines, since this would waste
precision out at the right end. In its normalized mode, .101 x 23,
the number contains 23 bits of precision. This corresponds to more

than 7 decimal digits.

D. Fixing a floating point number is the reverse of the float.
It is shifted left across the binary point until the exponent equals
zero. The fractional part remaining, if any, is either discarded or

used for rounding off the integer.

E. Negative numbers are represented as the one's complement
of positive numbers as in standard LINC integers. The mantissa (high
and low order words) is merely complemented. Note that there is no

sign bit in the low order word.

F. Negative exponents indicate that the number is less than one
and has been shifted left until it is normalized. The sign of the
exponent should not be confused with the sign of the mantissa.

101 x 2—3 is no more a negative number than is 5 x 10_3. In the
former the minus exponent indicates that if the number were fixed it
would be ,000101. The floating point routines would give a zero if

requested to fix this number.

4. Method of Operation

A. The two quantities in a floating point operation, such as

ADD, are called the Floating Accumulator and the Operand. The former

24

is maintained in locatioms 1120, 1121, and 1122. The latter is

specified in the calliﬁg sequence.

B. Operations calling for an integer operand expect a standard
LINC number, positive or negative. These operations are included
striaotly to save programming space. The integer is always floated

before it is used.

C. The FIX operation leaves the integer value in the LINC
accumulator. The last bit scaled off to the right is left in the LINC
bit for round off purposes. Numbers larger than 3777 or smaller than
.5 are fixed as 3777 and zero respectively. Negative numbers

similarly out of range give -3777 and -O.

D. Errors such as zero divisors and negative square roots cause
a jump to the end of the operation when they are discovered. The FAC

may contain garbage at this point.

E. Index registers 12-17 are used by the floating point routines

and are not restored at exit.

5. Timing

The timing for the various operations was computed by running
through each operation 1000 times. Values were chosen which represented
the worst case. For example: floating 1 requires some 4.5 milli-
seconds; whereas, floating 1000 requires about .5 milliseconds. The
variation in the speed of the other operations is much less, about 1 or

2 milliseconds.

ADD 4.5 milliseconds
Float 4.5 milliseconds
Multiply 9 milliseconds
Divide 27 milliseconds
Fix 1 millisecond

6. Parameters and Use

A. Instruction Format

25

The format at the right represents a series .

of instructions inserted in any standard LINC program. '
Execution of floating point operations starts with Jmp 1000
the entry, Jmp 1000. Two parameters are required for operan?

operation
each floating point operation following the entry. operand
(See below for parameter description.) After the operation

operand
last parameter codes are again_interpreted as stan- operation
dard LINC instructions. '

B. The operand specification is an address.

(1) Direct address. The code 300, as an operand, is inter-
preted by the floating point routines as the address of the value
required in the operation. If the operation requires an integer, only
the value in location 300 is picked up. If the operation expects a
floating point number the values in locations 300, 301 and 302 are
picked up. They are assumed to be in the normalized floating point

mode specified previously.

(2) Indirect address. The code 4300 refers to a value whose
address is in location 300. The 4000 bit in the operand always
indicates an indirect address. Any location may be used as an indirect
address. This differs from the restriction in standard LINC codes of

using only index registers for indirect addressing.

(3) Zero. A zero operand refers to the floating accumulator.
Hence, in order to square a number in the FAC one need only specify a

zero operand and the multiply operation, 4.

C. Operations

The operation codes with their descriptions are listed on
page 22. The 4000 bit in the operation code indicates a continuing
series (see example). When the 4000 bit is absent from an operation
code the subsequent location will be executed as a standard LINC

instruction.

26

There are 27 operations available in the floating point rou-
tines. Most of these are merely permutations of the ADD, MUL, DIV,
FIX, and FLT. Used judiciously these permutations save a great deal

of time and space in programming floating point operations.

The square root routine is included because it has been

found quite useful.

D. Example: On the following page can be found a program for
computing the mean and standard deviation of the numbers in locations

2000-3777 (listing 1). The formula used for this program is:

2 2
_ _Ix ;\J&Zx - (x)
Mean N~ S.D. NeN-1)

Registers A and B, (locations 400-405) are used for storing
respectively the sum and the sum of squares. They are also used for

storing the results, the mean and standard deviation at the end.

27

TITLE---EXAMPLE ;

400
401 Register A
402 :
403
404 Register B
405
406 SETil Start
‘ 407 2000
| 410 JMP 1000
‘ 411 400 }
412 4015 Clear A
413 403 §
414 15 Clear B
| 415 JMP 1000
| 416 4001 z
417 4014 Float Integer
420 400
| 421 4021 § Add to Memory - Register A - Sum
422 4001
\ 423 4014 i Float Integer
| 424 0 } Scinre
425 4004 quar
25? 323 } Add to Memory - Register B - Sum of Squares
430 LDAi
431 1
432 AD Increment and Check for End
433 2
434 SAE{
435 -3777
436 JMP 415 Go to Next Integer
437 JMP 1000
440 407 } 2
441 4010 £x“ « N (2000)
442 403
443 4023 } Store in B
444 400
445 4001 } Clear and Add Ix
446 0 } s
447 4004 quare
450 0
451 4003 } Complement
452 403
453 4021 } Add to Memory - B
454 407
455 4014 } Float N (2000)
456 431 i
457 4026 Subtract 1
460 407 }
461 4010 Times 2000
462 403 }
463 4006 Divide into B
464 0
465 4000 } Square Root
466 403 }
467 4023 Store in B - S.D.
470 400 k
471 4001 Clear and Add Ix
472 407 }
473 4011 Divide by N (2000)
474 400
475 23 } Store - Mean LISTING 1

e

TITLE~-~- FLT.

1000
1901
1902
1003
1044
19045
1006
1007
1010
1011
1012
1913
1914
1915
1016
1017
1020
102}
1022
1023
1024
1025
1026
1027
1030
1931
1032
1233
1934
1035
1036
1037
1240
1041
1042
1043
1044
1845
1046
1047
1050
1951
1952
1953
1954
1955
1056
1257
106 0
106 1
1062
1963
106 4
1065
1066
1067
1070
1071
1072
1073
1074
10975
1276
1077

CLR

ADD @
ADD 1445
STC 17
SET+ 13
1121
SETr 14
1122
SETt15
1124
SETt16
1125
LDAr 17
AZE®

ADD 1032
APO*

JMP 1625
BCO+
-1777
STC 1024

STAr

]

STC 12
LDAr 17
RoL 1t
ADA?
-3617

STC 1045
ROLt 1
STC 1047
LDhAa 12
STC 1123
LDAt 12
STC 1124
LDAr 12
STC 1125

SRO¢t

(7]

JMP 1014
STC 1845
ADD 17
ADA?
-1776
STC 1057
ADD 1045

CLR

ADD 1123
STA 15
SCR 13
STC 1125
ADA?t

13

STC 1123
apD o
STC 1073
JMP 1500
HLT

JMP 1532
JMP 1072
ADD 1120
AZE

|
é
a
]

Cic wp re,‘\'uw_ address

8ot ‘wdex fug‘\f‘zf—‘- tt the € \uﬁwﬁ &tcmu\&t’;r’(Fm)l
awd & e W\J;y\‘**CvC\' (awcb)

Rieh wp addvess oF Yhe c)'qero.wcl,

el wp oad decode ‘\'\/\e cqw‘&“ew cede.,
\—€AVa.~ka,AQ&Jck aA O— ﬁh-9 wﬁj¥u_rﬁhn

Ple uQ'f\e egarwm& ol Q@& C%
o R P _&éwguuibﬁt V&ﬁgﬁ“aru

I'W.Q T e L\QQruQn‘t‘e, oeu-c_\'\ew
Cleelr %yp WYYak ¢ b~m-‘9h€ ﬁ\oixwﬂ~ecwi'hoinnzs.

Compta nifwen Lecifion and epeate oik.

LISTING 2

The Floating Point Package

APO?

JMP 1165
LDA 13
SCRt 14
JMP 1046
ADD 1277
APO¢

JMP 1737
coM

ADD 1423
STC 1116
ADD 1122
ROL t1
LDA 13

JMP 10146

SET 12

2

LDA 15
BCO 13
SCRt 14
LDA 15
LZE

JMP 1174
SCRt 14

ADD 1129

CoMm

ADD 1123
LZE

coMm

AZE

JMP 1174
CLR

JMP 1150
HLT

SET 12

%/

LDA 13
coM

ADA 15
AZE

JMP 1174

LDA 14
STC 1172
LDA 16
coMm
LAM?

]
RORt 1
APO?
XSK+t 12
CLR
JMP 12

Fuo We blttug teemmntaton .

Floslmg, Qecwmaddor (Fa.e_).
e AAMA&A-:& LC\NB)C
8 regpsler

Q (Quetient) w‘gxsfé“’ .

Cowpave e size of e Foe aud
Hhe Oy 2§ e Fae w gredi e
w.@m Conay M.~
Lociliow ©+\. OFXwonue Ao
0+ .

LISTING 2 (cont.)
30

1200
1201
1202
12@3
1204
1205
1206
1207
1218
1211
1212
1213
1214
1215
1216
1217
1220
1221
1222
1223
1224
1225
1226
1227
1230
1231
1232
1233
1234
1235
1236
1237
1240
1241
1242
1243
1244
1245
1246
1247
1250
1251
1252
1253
1254
1255
1256
1257
1269
126 1
1262
1263
126 4
1265
126 6
1267
1270
1271
1272
1273
127 4
1275
1276
1277

CLR

ADD @
STC 1252
LDA 15
AZE®

JMP 1252
LDA 13
AZE?

JMP 1251
JMP 1474
STC 1236
ADD 1120
CcCoM

ADD 1123
AZE*

JMP 1233
APO?

JMP 1224
STC 12
JMP 1227
com

STC 12
JMP 1730
JMP 1517
XSKt12
JMP 1227

JMP 1650

JMP 1604

JMP 1474

SRO*

0]

JMP 1250
APO?

JMP 12568
LDA 13
ROL 1
LDA 15
ROR¢t |
JMP 1522
JMP 1650
JMP 1870
JMP 1557

JMP 1474
STC 1674
JMP 1632
JMP 1550
JMP 1625
ADD 1120
ADD 1126
STC 1126
SETt12
-14

CLR

SRO

1139

JMP 1604
LDA 15
RORt 1
JMP 1522
XSKt 12
JMP 1265
SET*r12
-13

Add Y M & Yo Feoc. Lecve
e neaod® e die Foe.

(““Jkgi*%Qﬁxr*jhﬂ’ Otusu—t?&ﬂA Mo Yae,

L eave —he Awﬂ “w. o Fae.

LISTING 2 (cont.)

31

1300
1341
1302
1303
1304
1365
1396
1307
1310
1311
1312
1313
1314
1315
1316
1317
1320
1321
1322
1323
1324
1325
1326
1327
1330
1331
1332
1333
1334
1335
1336.
1337
1349
134]
1342
1343
1344
1345
1346
1347
1350
1351
1352
1353
1354
1355
1356
1357
1360
1361
1362
1363
1364
1365
1366
1367

1370

1371
1372
1373
1374 .
1375
1376
1377

CLR

SRO

1127

JMP 1604
LbA 15
RORt 1
JMP 1522
XSKt 12
JMP 1300
LDA

1126

STC 1123
JMP 1650
JMP 1070
JMP 1673

JMP 1474
STC 1674
JMP 1632
JMP 1505
JMP 1046
JMP 1156
JMP 1331
JMP 1559
JMP 1335
JMP 1730
JMP 1517
JMP 1650
JMP 1730

JMP 1616

ADD 1123
com

ADD 112@
STC 1126
STC 1131
STC 1132
SETt12
1130
XSKt 12
JMP 1604
JMP 1604
JMP 1557
JMP 1570
LDA 13
APO

JMP 1367
LbDAa 12
BCO*
-3777
STA 12
JMP 1616
SRO

136 0

JMP 1376
JMP 1347
AZE

JMP 1363

BCO 14
AZE?

APO

JMP 1363
JMP 1356
SRO¢
2525

(\‘\M/H'\‘%LK ertaned |

Dwide Yo Fac Q\,sﬂ».e,l\n:y

Leave o f&A&&ﬁ wetle Fae.

LISTING 2 (cont.)

1488 JMP 1346
1401 LDA 12
1402 STC 1125 , o .
1483 ADD 1131 Divide enlinued,
1404 ROR® 1
14085 UMP 1522
1496 JMP 1311
1407

1410 JMP 1557
1411 JMP 1744
1412 JMP 1557
1413 JMP 1046
1414 JMP 1200
1415 JMP 1046
1416 JMP 1616
1417 JMP 1412
1420 JMP 1253
1421

1422 JMP 1320
1423 360

1424 JMP 1730
1425 JMP 1320
1426 JMP 1068
1427 JMP 1414
1430 JMP 1060
1431 JMP 1420
1432 JMP 1060
1433 JMP 1422
1434 JMP 1060
1435 JMP 1424
1436 JMP 1557
1437 JMP 1076
1440 JMP 1060
1441 JMP 1412
1442 JMP 1625
1443 JMP 1546 |
1444 JMP 1700 b M ax /
1445 1776

1446 JMP 1706 . .

1447 1776 ‘7 Win

}
§
!
$
s
}
|
!
3
$
}
s
$
S
|
}
1450 JMP 1711 } 20
!
§
}
;
§
é

o SQrT
{ Cla
a ndd
3 Com
Y Maul
S Foc/Avy
[Ave /Foe
1 Fae ¥ X

1C Foe x T
\ Foe / L ,
™ I / Fec A Tab\e

13 FixX Sece udp- %cr ‘e
W Elouk explomalion of codes.

\S (Lezon—

1451 1 Sign
1452 JMP 1200
1453 JMP 1456
1454 JMP 16 16
1455 JMP 1414
1456 JMP 1716
1457 JMP 1046
1468 JMP 1632
1461 JMP 1412
1462 JMP 1632
1463 JMP 1416
1464 JMP 1060
1465 JMP 1454
146 6 -
1467

1470

1471

1472

1473

1474 LDA 15
1475 B8CO 13
1476 SCR 13
1477 JMP @

e Tuevemess
33 Subtrd

23 S*eve

A4 Setsign glus
A5 St san mmua

b Fac~- 1T
Te~*qcr&y5 N@f;tua h&L Aﬁfwxml oot

LISTING 2 (cont.) 13

1500
1591
1502
1503
1504
1505
1506
1587
15109
1511
1512
1513
1514
1515
1516
1517
1520
1521
1522
1523
1524
1525
1526
1527
1530
1531
1532
1533
1534
1535
1536
1537
1540
1541
1542
1543
1544
1545
1546
1547
1550
1551
1552
1553
1554
1555
1556
1557
1560
1561
1562
1563
1564
1565
1566
1567
1570
1571
1572
1573
1574
1575
1576
1577

1.DA 15
ROL 1
BCO 15
APO

JMP 9
SET 12

7]

LDA 15
AZE

JMP 1515
BCO 16
APO?t

AZE
XSKt12
JMP 12
CLR

LDA 15
SCRt}
STC 1124
ADD 1125
ROR* 1
STC 1125
ADD 1451
ADD 1123
STC 1123
JMP 2
LDA 16
ROL*1 |
STA 156
Lba 15
ROLt1
STC 1124
LAM 16
CLR

ADD 1447
ADD 1123
STC 1123
JMP 0
JMP 1557
JMP 1456
LDA 15
STC 1127
LDA 16
STC 1130
ADD 1123
STC 1126
JMP @
LDA 1S5
STC 1121
LDA 16
STC 1122
ADD 1123
STC 1120
JMP @
ADD 1126
STC 1123
ADD 1127
STC 1124
ADD 1130
STC 1125
JMP @
LDA 13
STC 1127
ADD 1122

|
|

|
B
|-
:

AN

Tt 0$%>}A “bu“ulﬁfﬂ (V3 TVEW ex\.

T oy tgpals gons e e+,

therwise AN ox L,

Seale Oaub N{ﬂkt VT Qxexum:k

S@Cﬂwww

Pk Oy o Fec and At & sTore.

LISTING 2 (cont.)

34

16 00
1601
1602
1603
1604
1605
1606
1607
1610
1611
1612
1613
1614
1615
1616
1617
1620
1621
1622
1623
1624
1625
1626
1627
1638
1631
1532
1633
1634
1635
1636
1637
16 4@
1641
16 42
1643
16 44
16 45
16 46
1647
1650
1651
1652
1653
1654
1655
1656
1657
1660
1661
1662
1663
1664
1665
1666
1667
1670
1671
1672
1573
1674
1675
1576
1677

STC 1138
ADD 1120
STC 1126
JMP 0
CLR

LDA 14
LaM 16
LbA 13
LaM 1S
STC 1045
LaM 16
STC 10845
LAM 15
JMP @
LDA 16
COM

STC 1125
ADD 1124
com

STC 1124
JMP 0
CLR

STC 1123
STC 1124
STC 1125
JMP @
SET 12

(]

LDA 13
APO? :
JMP 1644
coM

STA 13
LDA 14
CcoMm

STA 14
LDA 15
APO

JMP 1515
JMP 12
LDA

A

STC 1672
LDA 15
SCR 13
STA

1664

LAM 16
LDA 15
SCR 13
LAM 15
BCO*

2

APO*

JMP 1671
RORt 1
JMP 1522
CLR

SRO?*

2

JMP 1616
JMP 1557
JMP 1046

& Fd '
UuA«X ALLHJQ&L ’ LISTING 2 (cont.)

35

1760 JMP 1133
17861 JMP 1046
17802 JMP 1575
1783 JMP 1557
1784 JMP 1566
1705 JMP 1046
1706 JMP 1133
1707 JMP 1702
1710 JMP 1046
1711 JMP 1585
1712 JMP 1715
1713 LDA 15

1714 SCR 12

1715 JMP 1046

1716 SET 12 ?é
1717 1826
1720 LDA
1721 1120

Ik Ona 2 Foo, ek 't W Yo Foer, -

I Qg £ Fae, e ude W Fac,

.

S‘\‘ore, F0~c,.

1722 STA 12
1723 LDA 13
1724 STAt12
1725 LDA 14
1726 STAr12
1727 JMP 0
1730 LDA

1731 @

1732 STC 1736
1733 JMP 1575
1734 JMP 1557
1735 JMP 1566
1736

1737 LDA 13
1740 SCRt14
1741 BCO?

1742 3777

1743 JMP 10646
1744 ADD 17
1745 STC 1407
1746 JUMP 1000
1747 Sl G
1750 23

1751 CLR

1752 ADD 1120
1753 SCR 1
1754 STC 1120 Lo
1755 JMP 1000 '

3 e Saune Al e

Q\j\' [\rcx - fFoacpud fee > A“‘S‘
\es veverse e ~two o(m,:\c\.e;

5@*’ Obuunmggﬁ@b *b e&uayL Woliisia 397?,

1760 1471
1761 4006
1762 1466
1763 4002
1764 1777
1765 11

1766 SROt
1767 3567
1778 JMP 1755
1771 ADD 1407
1772 STC 17
1773 LDA 17
1774 APO

1775 JMP 1014 /J.
1776 JMP 1851

1777 2

LISTING 2 (cont.)
36

IV. SUBROUTINES SUITABLE FOR QUESTION-ANSWER
PROGRAMMING OF THE LINC COMPUTER

This section contains a number of subroutines useful to the LINC
programmer in constructing question-answer programs providing for
computer-user interaction. The subroutines are in symbolic coding
form, suitable for inclusion with the programmer's master program,
and intended to be assembled into LINC code at the time of complete

program assembly.

The subroutines were written in the LASS assembly language for
use with‘the LOSS operating system on the LINC (see Section V). They
take care of the timing and data conversion necessary to input or out-
put alphanumerics, octal numbers, or decimal numbers from or to a
teletype. The teletype used in development of these subroutines is
a Model 33 (unbuffered) connected to the LINC external level 0 for

input and relay O for output to the teletype.
Generally, six functions are implemented:

(1) Alphanumeric character table output to teletype.

(2) Teletype alphanumerics into a character table.

(3) Octal number in the LINC accumulator output to teletype and
typed in octal.

(4) Teletype input of an octal number to an octal number in the
LINC accumulator.

(5) Octal number in the LINC accumulator output to teletype and
typed in decimal (12 bit or 24 bit).

(6) Teletype input of decimal integers converted to octal in the

LINC accumulator (12 bit or 24 bit).

Certain other functions such as RUBOUT, line feed, carriage
return, etc., are included. These are all detailed in the individual

subroutine descriptions in this report.

37

Each subroutine description includes:

(1) Specification of the index registers, if any, the subroutine
uses. (The index registers used may be used elsewhere, but the con-
tents of these registers is subject to destruction when the program
enters this subroutine.)

(2) The entrance tag. (It must be declared "GLOBAL" in the
calling program in the LOSS system.)

(3) Other subroutines of the set which may be called by the
described subroutine.

(4) The number of locations used by the described subroutine.

(5) A typeout of the LASS symbolic coding.

Since LAP4 has certain format and assembly limitations, several
changes must be made to the LASS symbolic coding. The 'GLOBAL" tag
declaration has no function in LAP4 and must be removed when the cod-
ing is inserted into the LAP4 manuscript. The "i bit" designation ;
must be changed to i, and the "present line" indicator . must be
changed to p. Since the LASS assembler permits tags of any length
the LASS tags must be converted to the two character 'number,letter'

format and preceded by a "#" rather than a comma when declared.

The descriptions that follow refer to the location of the jump
instruction to the subroutine as '"call" and the following locations

are "call + 1," '"call + 2"....

All numbers appearing in the descriptions are octal unless other-

wise indicated.

38

1. Subroutine: READCHAR

Index Reg. Used: 0, 17
Number of Locations: 43
Entrance Tag: RC

Other Subroutined Called: ©None

READCHAR accepts one teletype character and puts the appropriate
code in the accumulator. Entering the READCHAR subroutine at tag RC
initiates a loop waiting for a key to be struck on the teletype. Upon
exit, the half word code (see Table 3 at the end of this section)
representing the character will be in the right half of the accumulator.
Control is returned to the main program two instructions beyond the

jump to RC (call + 2).

Three exceptions exist to the above rules. Striking the 'RUBOUT"
key causes a 137 to be left in the accumulator when control is returned
to call + 2. A carriage return or line feed will cause control to be
returned to main program at the instruction following the jump to RC
(call + 1) though nothing of any significance will be left in the

accumulator.
No provision has been made for using the special control keys.

The symbolic coding for READCHAR is givenvin Listing 3.

39

**READCHAR*% %

GLOBAL RC

#RC LDA (ENTER HERE)
p :

STC TERM (HALF)
XSK3@ (WORD CODE)

ADD 0O (18)

STC RETN (RETURNED)

<19>

SXL @ (IN ACCUM)

JMP. =1

CLR (RETURNS TO CALL+1)
SET317 (ON CAR. RET.)
1241 (OTHERWISE CALL+2)
sPULSE BSE3

200 (I17 USED TEMPOR)
SWAIT XSK3 17

<20>

JMP.~-1 (PULSES COME)
LZE (IN ON EXTERNAL)
JMP GOT (LEVEL @)
ROR31 (FROM UNBUFF)
SET317 (TELETYPE)
1340

SXL o

JMP WAIT

<30>

JMP PULSE

»GOT XSK317 (EXTRA)
JMP. -1 (PAUSE)
ROL3 !

coM

ADA3

2717

AZE 3,

<42>
CLR
APO
»TERM (EXITS HERE)
SCR 1 (ON CR OR LF)
+RETN (NORMAL EXIT)

40

LISTING 3

2. Subroutine: DECOCT

Index Reg. Used: 0O

Number of Locations: 55

Entrance Tag: DO

Other Subroutines Called: READCHAR

DECOCT accepts a string of teletype numerics, interprets them as a
decimal number, and puts the 12 bit octal conversion in the accumulator.
Entering DECOCT at tag DO initiates a loop waiting for a decimal in-
teger to be input from the teletype. Spaces are ignored. A minus sign
is necessary for negative quantities but the plus sign is optiomnal.

The entry is considered terminated when a carriage return is struck.
At this time control is transferred to the main program at '"call + 2"

with the quantity in octal left in the accumulator.

When a "RUBOUT" or other non-numeric (other an +- or space)
character is struck, control is returned to the main program at

"call + 1."
No check is made for overflow of the 12 bit LINC word.

The symbolic coding for DECOCT is given in Listing 4.

41

DECOCT

GLOBAL DO RC

»DO LDA (CONVERTS)

@ (A TYPED DECIMAL)
STC ERROR (QUANTITY)
XSK38 (TO A 12 BIT)

ADD @ (OCTAL NUMBER)
STC RETN C(IN ACCUM)

<1 @>

sMINUS STC FLAG

sNEXT STC ANS

JMP RC (IGNORES SPACES)
JMP DONE

AZE3

JMP.~-3

SHD3 (CHECK FOR SIGNS)
1300

<20>

\MP.’G

SHD3

1500 A

JMP MINUS

SAE3 (NORMALLY)
137 (RETURNS TO)
JMP.+2 (CALL+2)
JMP ERROR (BUT ON)

<30>

ADA3 C(INPUT FORMAT)
«31 (ERROR IT EXITS)
APO3 (TO CALL+1)
»ERROR 000

ADA3

11

AZE

APO3 (USE WITH)

<40>

JMP.+2 (READCHAR)

JMP ERROR (SUBROUTINE)

STC TEMP

ADD ANS

MUL3 (NO CHECK FOR) ‘
12 (OVERFLOW)

ADA3 ‘ ‘
» TEMP

42

<50>

JMP NEXT C(JUMPS)
»DONE LDA3 (<HERE>)
2ANS (ON CAR RET)
SROJ

+FLAG (MINUS FLAG)
CoM

»RETN

LISTING 4

3. Subroutine: DBLDECOCT

Index Reg. Used: 15, 16

Number of Locations: 140

Entrance Tag: DDO

Other Subroutines Called: -READCHAR

DBLDECOCT accepts a string of teletype numerics, interprets them
as a decimal number, and puts the 24 bit octal conversion in locations
"call + 1" (most significant) and "call + 2" (least significant).
Spaces are ignored. A minus sign is necessary for negative quantities
but the plus sign is optional. The entry is considered terminated
when a carriage return is struck. At this time control is transferred
to the main program at "call + 4" with the quantity in "call + 1 and
call + 2."

When a "RUBOUT" or other non-numeric (other than + - or space)
characters is struck, control is returned to the main program at

"Call + 3.H
No check is made for overflow of the 12 bit LINC word.

The symbolic coding for DBLDECOCT is given in Listing 5.

43

*#DBLDECOCT##

GLOBAL DDO RC

sDDO LDA (ENTER HERE)
@ (ACCEPTS A TYPED)
BCL3 (DEC QTY)

6980 (RETURNS HIGH)
STC 1S5 (ORDER 12 BITS)
XSK3@ (TO CALL+1)

<13> i

XSK3 0(LOW TO CALL®*2)
ADD @

STC ERROR B
XSK3 @

ADD @

STC RETNCINS 116 USED)
sMINUS STC FLAG

STC ANSL -

<20> .

STC ANSU

sNEXT STC TEMP1

STC TEMP2 '

JMP RC (SKIPS SPACES)
JYP DONE

AZES

JMP, -3

SHD3 (CHECK FOR SIGNS)

<33>

1300

JMP =6

SHD3

1500

JUYP MINUS

SAES (NORMALLY) ¢
137 CRETURNS TO)
JMP.¢2 (CALL+4)

<40>

JMP ERROR (BUT ON)
ADA3 (INPUT FORMAT)
-31 (ERROR IT EXITS)
APO3 (CALL+3)

sERROR 000

ADA}

11

AZE

44

<50>

APO3 (USE WITH)
JYP.+2 (READCHAR)

JMP ERROR (SUBROUTINE)
AZE}3

CLR

STC TEMP

SET316

-12

<60>
sMULT12 CLR
ADD ANSL
LAMS3

»TEMPY

LDAS

»ANSU

LAM)

»TEMP2

<T78>

STC @

LAM

TEMP1

STC @

LAM

TEMP2

XSK3 16

JMP MULT12

<1069>
CLR

ADD TEMP
LAM
TEMP1
STC o
LAM
TEMP2
STC ©

<110>

LAM

TEMPY

STC ANSL

LAM

TEMP2

STC ANSU ,
JMP NEXT C(JUMPS)

»DONE SRO3

LISTING 5

<120>
2FLAG
JMP COMP
LDA

ANSU

STA 1S
LDA

ANSL
STA3 1S

<130>
sRETN
2»COMP LDA3
2ANSL

coM

STC ANSL
ADD ANSU
coM

STC ANSU

<1 409>

JMP FLAG+2

»TEMP

45

LISTING 5 (Cont.)

4. Subroutine: OCTALIN

Index Reg. Used: O

Number of Locations: 53

Entrance Tag: OCTIN

Other Subroutines Called: READCHAR

OCTALIN accepts a string of teletype numerics, interprets them as
an octal number, and puts the octal number in the accumulator. Enter-
ing OCTALIN at tag OCTIN initiates a loop waiting for an octal integer
to be input from the teletype.

Spaces are ignored. A minus sign causes the number entered to be
complemented (typing - 136 will give the same result as typing 7641).
A plus sign is optional. The entry will be considered terminated when
a carriage return is struck. At this time control is returned to the

main program at 'call + 2" with the quantity left in the accumulator.

When a "RUBOUT'" or any character other than +, -, 0, 1, 2, 3, 4, 5,

6, 7 is struck control is returned to the main program at ''call + 1."
No check is made for overflow of the 12 bit LINC word.

The symbolic coding for OCTALIN is shown in Listing 6.

46

0CTAL IN <S@>

ROR 3
GLOBAL OCTIN RC SROS
sOCTIN LDA (ACCEPTS) sFLAG
@ (DIGITS TYPED IN) com
'STC ERROR CAND) sRETN
XSK3@ (FORMS AN OCTAL)

ADD @
STC RETN (WORD IN)

<1@> '
»sMINUS STC FLAG (ACCUM)
sNEXT STC ANS

JMP RC

JMP FIN

AZES (IGNORE SPACES)
..MP."S

SHD3

14600 (CHECK FOR SIGN)

<20>

JMP. -6

SHD3 (NORMALLY RETURNS)
1560 (TO CALL+2)

JMP MINUS (BUT JUMPS)
SAE3 (TO CALL+1 ON)

137 (RUBOUT AND)
JMP.+2 (IMPROPER)

JMP ERROR (INPUT)

<33>
ADA}
-27
APO3
»ERROR 0000

ADA3

7 (USE WITH READCHAR)
AZE (SUBROUTINE)
APO3

(FORMAT)

<40>

JMP.+2

JMP ERROR (NO CHECK)
ADA3 (FOR OVERFLOW)
»ANS 0000

ROL 3

JMP NEXT (JUMPS)
»FIN LDA (<HERE>)
_ANS . (ON CAR+ RET.)

47

(MINUS FLAG)

LISTING 6

5. Subroutine: ALNUMIN

Index Reg. Used: 0, 15, 16

Number of Locations: 34

Entrance Tag: ANIN

Other Subroutines Called: READCHAR

ALNUMIN accepts a string of teletype alphanumerics and places the

appropriate codes in a defined character table in LINC core.

Entering ALNUMIN at tag ANIN initiates a loop which waits for
alphanumeric characters to be typed in and stores these characters
in half word code (see Table 3 at the end of this section). These
codes are stored (two per word) in core as designated by index
register 15. Index register 15 should be set to the address of the
first word of the storage area (called TABLE in sample below) + 3777.
The first character typed goes into the left half of the first word
of the storage area; the second character goes into the right half, etc.
Index register 16 should be set to the negative of the maximum number
of characters intended for input. Leading spaces are suppressed during

input and need not be counted.

The routine returns to the main program at 'call + 3" when a
carriage return is struck to "call + 2" when the "RUBOUT" key is
struck, and "call + 1" when the number of characters entered exceeds

the size of the table as indicated by index register 16.

The following sample call provides for input of 128 characters:

SET: 15 ,TABLE 0
TABLE + 3777 0
SET: 16 0
-12 0
JMP ANIN 0

JMP OVERFLOW (too many characters)
JMP CANCEL ('"RUBOUT" key struck)

48

ALNUMIN

GLOBAL ANIN RC

»ANIN LDA (ENTER HERE)
@ (SET 116 TO =-MAX NO)
STC MAX (OF CHARACTERS)
XSK3 0

ADD ©

STC RUBOUT

<}10>

XSKs® (SET 115 TO)

ADD @ (YOUR TABLE+3777)
STC RETNC(THE TABLE WILL)
JMP RC (BE FILLED TWO)
JMP RETN (CHARS/WORD)
SAES

137

JMP.+2 (USE WITH)

<2@>

»RUBOUT 08 (READCHAR)
AZE3 (SUBROUTINE)
JMPe=7

JMP ST

+NEXT JMP RC

»RETN (NORMALLY)

SAE3 (RETURNS T8)
137 (CALL+3 BUT ON)

<3@>

JMPe.+2 (TABLE OVERFLOW)
JMP RUBOUT (EXIT 1S TO)
»ST STH31S (CALL+1)
XSK316 (AND ON RUBOUT)
JMP NEXT (1T RETURNS)
2MAX (TO CALL+2)

49

LISTING 7

6. Subroutine: TYPECHAR

Index Reg. Used: 0, 12, 13, 14
Number of Locations: 30
Entrance Tag: TC

Other Subroutines Called: None

Entering TYPECHAR at tag TC causes the typing of the character
whose half word code (see Table 3) is in the accumulator. If one
wishes to perform a carriage return or line feed, the actual teletype
code (see Table 4 at the end of this section) must be put in the

accumulator and the subroutine entered at tag CRLF.

In either of the above cases the subroutine returns to the main

program at the instruction following the jump to entrance.

The symbolic coding for TYPECHAR is given in Listing 8.

50

sxTYPECHOR®»

GLOBAL TC CRLF

»TC ROL 1 (ENTER HERE)
COM (WITH HALF WORD)
ADA3 (CODE IN ACCUM)
217 '

»CRLF SET 12 (CAR RET)
@ C(AND LINE FEED)

<10>

SET313 (SPECIAL)

«13 (JMP CRLF WITH)
STC TEMP (TTY CODE)
SNEXT LDAS (IN ACCUM)
»TEMP 0

ROR31

STC TEMP

ROL31 (OUTPUT)

<20>

ATR (THRU RELAY @)
SET3 14

1356 ¢112 113 114)°
XSK3 14 CUSED TEMPOR)
JMPe=1

XSK313

JMP NEXT

XSK313 (EXTRA)

<30>

JMP.=1 (WAIT)
JMP 12 (RETURN)

51

LISTING 8

7. Subroutine: OCTDEC

Index Reg. Used: 0, 12, 13

Number of Locations: 73

Entrance Tag: OD

Other Subroutines Called: TYPECHAR

Entering OCTDEC at tag OD with a quantity in the accumulator will
cause that quantity to be converted to a decimal integer and typed out.
Negative quantities will be preceded by a minus sign. The number will
be right justified in a four place field with zero suppression carried

up to but not including the last place.

The subroutine returns to the main program at the instruction

following the jump to the entrance.

The symbolic coding for OCTDEC is given in Listing 9.

52

$0CTDEC#»

GLOBAL 0D TC

»0D STC HOLD (ENTER)
ADD @ (HERE WITH QTY)
STC RETN (IN ACCUM)
STC DIGITS

STC DIGITS+1

STC DIGITS+2

<10>

STC DIGITS+3

STC DIGITS+4

STC FLAG

ADD HOLD (USE WITH)
AZES (TYPECHAR SUBRTN)
CLR (112 113 USED TEMP)
APO3

JMP POS (IF NEG COM)

<20@>

COM . (AND)

STC MOLD

ADD .~2 (SET -~ FLAG)
STC . FLAG

2POS SET312
DIGITS-1

LDAS

2HOLD

<30>

SET313

1777

2CONV XSK313
ADA3

-12

APO

AZE3

JMP COW

<4@>

ADA3

32 (12+20)

STA3 12

LDA

13

AZE

JMP CONV-2 N
LDAs .

33

<50>

15

SROJ (CHECK)
+FLAG

STA3 12 (-FLAG)
CLR

ADD DIGITS+4
MP TC

ADD DIGITS+3

<80>

JMP TC

ADD DIGITS+2
JMP TC

ADD DIGITS+1
JMP TC

ADD DIGITS
JMP TC

<70>

»DIGITS (THE SUBRTN)
] (PUTS THE DIGITS)
") (HERE IN HALF)

0 (WORD CODE)
0

LISTING 9

8. Subroutine: DBLOCTDEC

Index Reg. Used: 0, 15, 16

Number of Locatioms: 202

Entrance Tag: DOD

Other Subroutines Called: TYPECHAR

Entering OCTDEC at tag DOD with a 24 bit quantity held in locations
"call + 1" (most significant) and "call + 2" (least significant) will
cause that quantity to be converted to a decimal integer and typed out.
Negative quantities will be preceded by a minus sign. The number will
be right justified in an eight place field with zero suppression

carried up to but not including the last place.
The subroutine returns to the main program at location '"call + 3."

The symbolic coding for DBLOCTDEC is given in Listing 10.

54

4DBLOCTDEC# - <58>

coM
GLOBAL DOD TC STC QTYL(SEND A)
»DOD LDA (ENTER HERE) . LDA3 (- FLAG TO)
8 (WITH HIGH ORDER) 1 (LOC FLAG BELOW)
BCL3¢12 BITS IN CALL+1) STC FLAG
6080 (LOW ORDER IN) ' sPOS SET316
STC 15 (CALL#+2) DIGITS~1
LDA 1S (RETURNS T0O) _ . sRESET LDAs (SET)
<19> : <60> _
STC OTYU (CALL+3) N 7777¢(DIVIDE QUOTIENT)
LDA3 1SC(AF TER TYPING) STC CTRU (COUNTER)
STC OTYL (7 DIGIT DEC) LDA} :
XSK3 @ (NUMBER) : 7776
XSK3 8 STC CTRL
ADD @ (115,16 USED) »CONV CLR
STC RETN LDAS (INCRE)
STC FLAG ‘ 1 (DIVIDE COUNTER)
<20> ! <70>
SET3 16 : LAM3
DIGITS-1 , »CTRL
SET3 15 STC @
-10 LAM3
STA3 16 . ‘ +CTRU
XSK3 15 "STC @
JHP.-Q LA"
ADD QTYU (USE WITH) CTRL
<30> , <100>
AZE (TYPECHAR SUBRTN) STC ©
JMP CHKPOS LAM
ADD QTYL CTRU
AZE CLR
JMP CHKPOS ' LDA3 (DIVIDE BY 12)
CLR -12
STC QTYU (KILL -8°S) LAMS
STC OTYL 0 QTYL
<40> . <110>
JMP POS . LDAS
»sCHKPOS LDA 17117
QTYU : LAMS
APO3 (IS VALUE POS?) »QTYU
JMP POS (YES) | STC @
COM (NO) ! LAM
STC aTYU l arYL
ADD QTYL 1 STC @

LISTING 10
55

<120>
LAM

QTYU
APO}

JMP CONV
AZE
JUP.+4
ADD aTYL
AZE3

<1 39>

JMP CONV .
CLR (CONWERT THE)
ADD QTYL (REMALINDER)
ADA3 (TO OCTAL CODE)
32

STAs 16 (STORE DIGIT)
LDA (DONE?)

CTRL

<1 490>

STC QTYL

ADD CTRU

STA

aTYUu

AZE

JMP RESET (NO)
LDA

CTRL

<150>

AZE

JMP RESET (NO)
LDA}

15

SRO3 (CHECK FOR)
+FLAG (- FLAG)
STA3 16

SET31S (YES)

<160>
-10
SET316
DIGITS+1?

- LDA 16 (SEND DIGITS)

JMP TC (TO TYPECHAR)
LDAs

-1

ADM

56

<170>

173

XSK3 1S
JMP =7
sRETN
»sDIGITS @
DITTO 7

LISTING 10 (Cont.)

9. Subroutine: OCTALOUT

Index Reg. Used: 0, 15

Number of Locations: 22

Entrance Tag: OCTOUT

Other Subroutines Called: TYPECHAR

Entering OCTALOUT at the tag OCTOUT with a quantity in the
accumulator will cause that quantity to be typed out as a positive

octal integer in the range [0000...7777].

The subroutine returns to the main program at the instruction

following the jump to the entrance.

The symbolic coding for OCTALOUT is given in Listing 11.

57

*x0CTALOUT **

GLOBAL OCTOUT TC
»0CTOUT STC HOLD(ENTER)
ADD @ (HERE WITH)

STC RETN (OCTAL QTY)
SET31S C(IN ACCUM)

7773

sROTATE LDA3

<10>

»HOLD (115 USED TEMPOR)

ROL 3

STA

HOLD

BCL3 (USE WITH)
7779 (TYPECHAR)
ADA3 (SUBROUTINE)
20

<20>

JMP TC
XSK315

JMP ROTATE
»RETN

58

LISTING 11

10. Subroutine: ALNUMOUT

Index Reg. Used: 0, 15, 16

Number of Locations: 10

Entrance Tag: ANOUT

Other Subroutines Called: TYPECHAR

Entering ALNUMOUT at tag.ANOUT will cause a set of alphanumeric
characters as determined by index registers 15 and 16 to be typed out.
Index register 15 should be set to the first word + 3777 of the set of
words containing the half word codes of the characters to be typed.
Index register 16 should be set to the negative of the total number of

characters to be typed.

The subroutine returns to the main program at the location follow-

ing the jump to the entrance.
The symbolic coding for ALNUMOUT is given in Listing 12.

The following sample call provides for typing the clause THIS IS A
TEST.
SET; 15
TABLE + 3777
SET; 16
-16
JMP ANOUT

,TABLE 6450 (TH)

5163 (18)
0051 (1)
6300 (9
4100 (A)
6445 (TE)
6364 (sT)

59

*SALNUMOUT *+

GLOBAL ANOUT TC

#ANOUT LDA (SET 115 TO)
@ (YOUR TABLE+3777)

STC RETN (SET 116 TO)
LDH31S (-NO. OF CHARS)
JMP TC (PUT 2 CHAR/WD)
XSK316 C(IN THE TABLE)

<19>
JMP.-3 (IN 1/2 WD FORM)
»RETN (USE W/TYPECHAR)

60

LISTING 12

11. Subroutine: ENDLINE

Index Reg. Used: O

Number of Locations: 12

Entrance Tag: EOL

Other Subroutines Called: TYPECHAR

Entering ENDLINE at tag EOL causes the teletype to execute a

carriage return and a line feed.

The subroutine returns to the main program at the location follow-

ing thée jump to the entrance.

The symbolic coding for ENDLINE is given in Listing 13.

61

*+*ENDLINE *»

GLOBAL EOL CRLF

sEOL LDA (ENTER HERE)
o (WILL CAUSE A)
STC RETN (CARR. RET.)
LDA3 (AND LINE FEED)
345 : '

JMP CRLF

<]1@>

LDAS (USE WITH)

3%3 CTHE TYPECHAR)
JMP CRLF (SUBROUTINE)
sRETN

62

LISTING 13

TABLE 3

CHARACTER CODE CHARACTER CODLE
Blank 00 @ 40

! 01 A 41
" 02 B 42
03 C 43
$ 04)] 44
% 05 E 45
& 06 F 46
! 07 G 47
(10 H 50
) 11 1 51
* 12 J 52
+ 13 K 53
, 14 L 54
- 15 M 55
. 16 N 56
/ 17 0 57
0 20 P 60
1 21 Q 61
2 22 R 62
3 23 S 63
4 24 T 64
5 25 U 65
6 26 \Y 66
7 27 W 67
8 30 X 70
9 31 Y 71
: 32 Z 72
; 33 Carr.Ret. 73
< 34 74
= 35 75
> 36 4 76
? 37 “ 77

Derived by:

CLR

ADD teletype-code

COoM

ADA;

277

SCR1

63

O = Mmoo o W o>

—
——

N < X = <« ¢ 83 n w o " o =2 X xR LA

175
173
171
167
165
163
161
157
155
153
151
147
145
143
141
137
135
133
131
127
125
123
121
117
115
113

TABLE 4

TELETYPE CODES

?
P

>

64

201
101
203
205
103
207
211
105
213
107
111
243
245
247
251
253
255
257
261
263
241
265
267
271
273
275

235
233
231
227
225
223
221
217
215
237
SPACE 277
RETURN 345
ADVANCE 353

L =N B o - N R s Y T " I - o

V. THE LOSS SYSTEM

This section presents a general description of the LOSS system
described in detail in NASA Technical Report No. IRL-1038 (see
bibliography). It includes basic information about certain LOSS
functions, the symbolic assembler (LASS), and the handling of non-

LOSS structured data tapes under LOSS.

The LINC Operating System, LOSS, consists of a basic control pro-
gram (the monitor) and additional programs to provide for writing and
running programs without dealing directly with the controls of the com-
puter each time a program is run. This type of system is generally
referred to as an executive system, a monitor system, an operating
system or some combination of these terms. In the case of LOSS the
above functions are carried out using tape unit 0 (left hand tape unit)
for storage of all absolute programs (the program stack) and reserving

tape unit 1 for data storage.

1. The LOSS Program Stack and Its Index

The LOSS program stack is made up of the basic system's pro-
grams together with the programs assembled onto it by the individual
user. This set of programs is located on the micro tape which, under
the LOSS system, is always mounted on tape unit O (left hand tape unit).
Each program normally occupies one of 77 (all numbers are in octal)
stack positions on this tape. A stack position is a 10 block area on
tape. Stack position 1 consists of blocks 10-17; position 2 consists

of blocks 20-27 . . . position 77 consists of blocks 770-777.

The system's programs occupy stack positions 10 through 25
(blocks 100-257). Though there are 16 stack positions for the system's
programs only 10 programs actually exist (the remaining stack positions
are used as working storage areas and additional program stack locations
needed by some of the system's programs). Several of these system's

programs merit special consideration; MONITOR, DEFINE, EDIT and LASS.

65

If the user simply intends to run previously written programs, then
only an understanding of the Monitor and Define programs are necessary.
An understanding of the Edit and Lass programs enable the user to write

and operate his own programs.

The basic set of system's programs on the program stack also
includes several which could be considered utility programs; TYPE,
DISPLAY, and DISTAPE. These are described on pages 16-24 of the LOSS

manual.

4. Monitor (MNTR)

Though the monitor exists on the program stack (position 15)
in the same manner as all other programs, it is unique in that it forms

the basis for the whole LOSS system.

It is loaded by setting the left and right switches to
0700 0150 (RDC 150) then 1lifting the DOTOG lever -- the right switches
are then set to 0000 and the START RS button is pushed.

The functions of the Monitor are: (1) to accept a program
name (or number —- see below) and relate it to a program stack position;
(2) to accept numeric (in octal) and alphanumeric (see string format)
parameters and relay them to the program being called (methods for
accepting these parameters by the user's program are discussed in the
notes on the assembler); (3) to read in additional tape blocks 1, 2, 3,
4, 5 of the stack position into quarters 1-5 of the memory and jump
to location 400 to begin execution. (Quarters 0 and 6 are intended to
be left undisturbed. However, steps can be taken to use those quarters
also —-- see LASS below.); (4) upon completion of a program (a JMP
RETURN in the program, RETURN is recognized by the assembler as a
reserved word related to a routine in quarter 0), execution returns to
the undisturbed quarter O which reads in quarters 1-5 of the monitor

which in turn requests another program call.

Other more obscure tasks, OVERLAY, PARAMS, SAVE-RELSTORE are

performed by the quarter O portion of the monitor and are discussed on

66

pages 39 to 43 of the LOSS manual.

The index to the program stack resides on block 155 of the system's
tape and comes into core along with the rest of the monitor. Its
structure is such that the monitor can easily correspond name-parameter
entries thereon to absolute program stack positions (further explanation
under Updating the Program Stack Index). 1In its basic form the program
stack index contains only the names of the system's programs. The user
may update this index using the procedure discussed later (it is not
done automatically when assembling a program into a stack location).
Since programs can be called by stack location number (a parameter
given at assembly time), it is not absolutely necessary to update the

index.

3. DEFINE and the Data Tape (Unit 1)

Before discussing the program DEFINE, used in the allocation
of data storage areas on unit 1, a thorough explanation of the LOSS
data storage system must be made. The micro tapes upon being marked
(see Lap 4 manual) are divided into 1000 (octal) blocks of 400 (octal)
words each. The LOSS system considers the 1000 blocks as 10 groups of
100 blocks each. Each group of 100 blocks is called a book. The
first block of each book; 0, 100, 200 . . . 700 is reserved as an
index for that particular book. As areas of a book are allocated using
the DEFINE program (see below) entries are automatically made in its
index consisting of a name, a starting block number, and a length.
These allocated areas are generally referred to as Texts or Files and

apply only to tape unit 1. Examples of their use are shown later.

The DEFINE program requires from the user (1) the number of the
book in which he wishes to reserve storage space, (2) the name the user
wishes to associate with the file, (3) the number of blocks of space he
desires to reserve (of course, must be less than 77 blocks). These
three parameters must be entered in the form of an alphanumeric string
(see page 4 of LOSS manual for general definition of a string). The

following is an example of the use of the DEFINE program.

67

<PROG>> Typed by monitor.

QEFINE(, Program name typed by user (_-indicates
carriage return).
(__ Underline indicates use of reserved

word or symbol.)

1 STRING>> Parameter request typed by monitor.

Z"BOOK 4 DEFINE TESTDATA lg:,

R Semicolon and carriage return by user

= indicates the end of parameters.
<RUN>>
<PROG>> Indicates successful completion by

calling for next program.

The above example would reserve a file (on the tape on unit 1)
in book 4, with a length of 16 blocks which could be referred to in some

other program call by:

s Slash followed by book number.
TESTDATA

The monitor system would convert the name and book number
(using the information in the book index) to an absolute starting
block number (somewhere between 401 and 477) and a length (16 in this
case) and make these two octal parameters available to a user's
program. Reference the section Accepting Parameters for programming

methods for accepting these parameters into a user program.

The DEFINE program also provides for relinquishing unneeded
text (files) space on unit 1. The input is again a string of the

following type:

<PROG>> Program request.
DEFINE/ Program name typed.
1 STRING>> Parameter request.

68

%''BOOK 4 ERASE TESTDATA", String entry made by user.

-
- Terminator typed.
-
<RUN>>
<PROG>> Next program requested.

The previous example would cause the DEFINE program to go to
the book 4 index (block 400) and remove the entry which is reserving a
particular set of blocks in that book under the name TESTDATA. It
should be remembered that in neither the define nor erase mode is any
action taken on the file (text) itself -- only on the particular book

index for that area.

Several defines and/or erasures can be combined as follows

when they refer to the same book.

<PROG>>

DEFINE

1 STRING>>
%"BOOK 4"

ERASE OLDDATA -
DEFINE DATASPACE..
DEFINE OUTDATA!

Ay
<RUN>>
<PROG>>

4. EDIT

The EDIT program is generally used to write symbolic programs
which later will be converted to absolute (machine language) programs

by the assembler (see LASS below). The EDIT program is used both for

69

the initial writing of the symbolic program as well as later correction

and updating of the program.

Edit requires that a file be defined to store the symbolic
coding entered through the teletypewriter. This file may be a maximum
of four blocks long. The number of instruction lines held in four
blocks depends on the number of characters per line but generally is in
the range of 400 to 500. However, more than one four block text can be
used to hold the symbolic coding for a program (see CONT page 31 of the
LOSS manual).

The EDIT program could also be used to develop alphanumeric text
for other applications since it is simply a program which provides for
storing BCD characters on tape (see page 9 of the LOSS manual for the

LOSS BCD codes).

One such application is the updating of the system's tape
program stack index (in no way related to book indexes on tape unit 1)

which is described later on.

The EDIT program is called in the following manner:

<PROG>> Monitor's program request.

EDIE/ User asks for EDIT programs. lIonitor
FILE>> asks for file on which to store the
_[2/ alphanumeric information.

SYMBPRQE/ User previously declared some file

; (max 4 blocks) on book 3 in this example.

=

Presuming the user is just starting to write a symbolic pro-
gram (not changing a previously written one) the EDIT program simply
displays two numbers and the end of text symbol on the LINC oscilloscope

(since no test material, coding, exists).

70

(1) 0001\\\\\\\~ Number of blocks of the text currently filled.

™~Line number.

End of text symbol.

There are two basic modes of the EDIT program -- the Control
mode (initial state) and the Input mode. The control mode is used to
move through the text with the use of the oscilloscope and to perform
certain operations on the text. The input mode is entered by striking
an I on the teletypewriter while in the conﬁrol mode. It is in the
input mode that the actual alphanumeric (symbolic coding) material is
entered. One exits from the input mode by striking a ! on the tele-
typewriter. A detailed description of the EDIT program and its control

operations begins on page 12 of the LOSS manual.
5. LASS*

LASS is the symbolic assembler under the LOSS system. Though
called just like any other program on the program stack, its function
is to convert a symbolic program written with EDIT into an absolute
(machine language) program and store that absolute program in a numbered
program stack position as specified by the user. This new program can
then be called through the monitor (by number only at this point) in the

normal manner.

The LASS assembler is called in the following manner:

<PROG>> Monitor's program request.
LASS User types in program name.
STACK #, FILES Monitor's parameter request.

* The actual language syntax is described on pages 26-34 with a list of .
operation mneumonics on page 38 of the LOSS manual. LINC, Vol. 16,

Programming and Use-1 describes the basics of LINC programming.

71

3é/ User types in the stack location he
13/ desires, the book number, and

SYMBPROG file name of the symbolic coding
developed with Edit.

=2

The stack location is the number of the program stack
location on tape unit O on which the user wishes to have the absolute
coding stored. Any stack location 0-77 will be accepted. However, the
monitor nor LASS makes no provision for safeguarding a program pre-
viously assembled onto the stack location in question. In particular

the user must realize that stack positions 10-25 are used by the

system's programs themselves.

One of this set, position 22, is a working storage position
for the LASS assembler and may be given as the stack location for an
assembly. Such a program will stay intact on stack location 22 until

another assembly is performed.

Performing an assembly in no way affects the program stack
index. Until the stack number assembled into has been given a name

(see Updating Program Stack Index), the program assembled can be referred

to only by number.

For the previous example the call to execute the newly created

program would be:

<PROG>> Monitor's program request.
3%7, Number of program (instead of a name).
PARAMS>> Parameter request given for programs

called by number.

72

Parameters would be given as provided

for in the particular program.
j;//
<RUN>>

<PROG

A. Program Starting Locations

The assembler, under normal circumstances, assembles the
first symbolic code line such that it will be located in location 400
when the program is loaded by the monitor. All succeeding lines will be
put in successively higher locations. This is equivalent to storing
the absolute coding for the first 400 symbolic instructions on block 1
of the 10 block program stack position selected by the user. When the
monitor loads the program it loads blocks 1, 2, 3, 4, 5 of the par-
ticular program stack position into quarters 1 . . . 5 of the computer

(blocks 0, 6, 7 are not loaded).

If the user does not wish to have his first symbolic code
line assembled into location 400 but say a lower location like 100, an

ORG statement of the form:
ORG 100

must precede the first actual symbolic code line (see page 29 of the
LOSS manual).

In this case block 0 of the selected program stack
position will contain the first 300 location of the absolute program
upon completion of the assembly. This block, however, will not be
loaded automatically by the monitor. Usually the programmer places an
ORG 400 within (in this case) 300 code lines of the ORG 100. It is to
the first code line after the ORG 400 that control would go after the

73

monitor loaded the program. At this point the programmer might load
the block 0 of that program stack position, thus having the entire

program in the memory. This, of course, restricts the programmer to
always assembling that program on a particular program stack position

since the read statement used to load the block 0 remains fixed.

B. Returning to Monitor

If quarters 0 and 6 of the memory have been left undis-

turbed by the user while executing his program the instruction:
JMP RETURN

will return control to the monitor (in quarter 0). If the user needs
quarter 0 and 6 of the memory they can be saved (say on block 6 and 7
of the program stack position) and then read back in just before the
JMP RETURN is executed. If one does not wish to save quarters 0 and 6

the instructions:

will reload the monitor completely just as was done manually when

operations were begun.

C. Accepting Parameters by the User's Program

Since the LOSS manual discusses the intricacies of accept-
ing parameters on pages 40-42 and 54-60 the discussion here will deal
only with accepting the parameters submitted to the monitor at the time

the user's program call is made.
Parameters of the form
/4
TESTDATA
which represent a file together with its book number (one has no

significance without the other) are converted, immediately upon being

74

entered, by the monitor. They are converted to two octal integers;

the first block of the file and the number of blocks (tape unit 1)
allocated to that file when it was defined (see DEFINE). These two
integers are saved on a buffer in such a manner that they can be

picked up by the user's program as described below. A user, if he knew
the actual starting block and length of the file (say starting block

is 423, length is 16), could enter:

423
16

at which time the monitor would recognize them simply as octal integers
and transfer them directly to the buffer. In either of the above cases,
that which is seen by the user's program is the same two octal integers

representing a starting block and a file length.

Similarly a parameter entry of the form:

/5
INPUTDATA

/6
OUTPUTDATA

would provide four octal integers to the user's program.

The entry:

/1
VOLTS
3125

would provide three octal constants to the user's program.

Accepting these quantities requires use of the coding in
quarter 0 of the monitor and also information left in quarter 6 (the
buffer) when the user's program is loaded. Therefore the parameters
should be accepted, first thing, in the following manner if the user

intends to destroy the contents of those two quarters.

75

| The coding:

\ JMP GET
| JMP + 3

JMP GETCL

Initialization IMP = Insert tag here to which
} control should go after
ADD O getting all parameters.

————— «—— Tag of location into which
the user wants the value to go.

JMP LSTEL

3776 «=———— Control entry described on
page 58 of the LOSS manual.

LDA;
One set of four /J-——~-
instructions for JMP LSTEL
each parameter
3776
LDA;
JMP LSTEL
3776
Terminator JMP LSTCL
User's
program
76

will pick up the parameters from the monitor's buffer (entered by the
user during the program call) and place them in the location named by

the user following the LDA; instructions.

A more detailed and extensive discussion of parameter handling

techniques is discussed in the LOSS manual, pages 40-42 and 54-60.

6. Updating the Program Stack Index

As mentioned before the assembling of a program into the
program stack in no way enters information into the program stack
index. This index is stored on block 155 of the program stack tape
(unit 0) and is loaded into quarter 5 of the memory when the monitor

is in core.

The index is updated by updating an identical image of it,
which is stored as a file on tape unit 1, using the EDIT program. If
an image of the program stack index is not presently available on tape

unit 1 proceed as follows.

Define a file of length one block using the DEFINE program.
Determine its absolute location on tape unit 1 by entering any program

number (or name) followed by the book number and a question mark:

<PROG>>

31 Any number.

/4 Book number in which file is defined.
? Question mark.

The contents of that book index will be printed out and from
this the absolute location of the 1 block file just defined can be
determined. With the location of the file determined, block 155 of the
program stack can be read into core and written out again on the file
just defined. An image of the program stack index is thus saved on

unit 1.

Using the EDIT program this image of the program stack index

can be displayed on the oscilloscope and altered using the normal EDIT

77

features. The program stack index as it appears for the basic
system's program can be seen on Listing 14. Each entry (representing
a program stack position) consists of two parts each terminated by a
dollar sign. The first is the program name and the second is the
parameter request the user wishes to have printed out by the monitor

when the name is entered during the program call.

The last entry is followed by two dollar signs together which
act as a terminator for the entire index. Notice that unused program
stack positions, below the highest one presently in use, must be

indicated by a
.$.9

entry. The number of the stack position and its name are related
simply by the position of the name in the program stack index. For
instance TYPE is in location 10 and EDIT is in location 16 as shown in

Listing 14.

After the image of the program stack has been updated as a
text on tape unit 1, the contents of the text can be transferred to the
program stack tape on unit 0. This is done by reading the single
block text into core (using the left and right switches) and writing

it out on block 155 of unit 0, the program stack tape.

7. Non-LOSS Structured Data Tapes

It is intended that the data tape used by LOSS (on unit 1 only)
be divided into 10 books of 100 blocks each and each book into files
(sometimes called texts). The explanation of the DEFINE program above

describes more thoroughly this format.

However, it is not absolutely necessary that the data tape be
structured into this book-file format. Since the monitor transfers

parameters of the form:

/1 Book number

DATA File name

78

«$.$
.$.8
eS.5
.$.$
«$.8
e$.$
«5.$

< 10> _
TYPES(MSG,FMT,"HLE)*S$
BLINKS ILES
DISTAPESNILS
DISPLAYSNILS

DEF INES$1 STRINGS
MNTRS.$

EDITSTEXTS

5.8

<20@>

+ 5.9

0$.$

«$.9

QAS. $.
LASS$STACK #, FILESS
$%

LISTING 14
79

into simply two octal integers, one can substitute for such sets of
parameters the two octal integers themselves. These two integers are
(1) the first block of the data area omn the tape, and (2) the length
in blocks of the data area. See '"Accepting Parameters' under LASS

described above for a more complete description.

80

APPENDIX A

Since a teletype unit provides a simple, convenient and inexpensive
input/output device, it seems to have been universally used on the LINC.
A small amount of interface wiring suffices to make the connection to
the LINC. Unfortunately, a number of different configurations have
evolved. One configuration is described in Information Bulletin #6,
issued May 26, 1964 by the Massachusetts Institute of Technology. The
address given for inquiries was:

S. M. Ornstein
CENTER DEVELOPMENT OFFICE
for Computer Technology in the Biomedical Sciences

292 Main Street
Cambridge 42, Massachusetts

Phone: 491-1934

The Bulletin also gives a program routine for the configuration, which

will be called the "LINC Standard" for the remainder of this appendix.

Another configuration was the full buffered input/output where
hardware means were used to make the serial-parallel and parallel-
serial conversion of the teletype code. There is no other reference

to this configuration in this report.

The LINC in our laboratory was connected to a Model 33 Teletype
in 1963 before any standard hardware configuration was recognized.
This hardware will be referred to as the "IRL connection," for which
all our own routines were written. Table 1 (in this appendix) gives a

comparison of the IRL connection with the LINC standard.

81

TABLE 1

A Comparison Between the IRL and LINC Standard Configuration

IRL LINC Standard
Output BR_ =1 BR_ = 1
Input Sense XLO XLO
Send/Receive Mode "half duplex" full duplex

The explanation of the Send/Receive Mode is as follows. In the
IRL connection the printer is wired to the keyboard. It types what
the key indicates, regardless of whether or not the LINC is monitoring
the teletype output. Thus the printer can be operated by either the
programmer or the LINC but not both at the same time. This is a
variation of the usual half duplex mode, in which the printer at
station 1 is activated only by the transmitted signal from station 2
under the control of a data set which determines the direction of
information flow. Our software uses the symbol ";" to carriage return
and space at the end of a program line. If the operator expects a
response from the LINC, he must not touch the keyboard until the
response is completed. If the operator is typing when the LINC
responds, the message will be garbled. The running of the program,
however, will be unaffected. 1In the full duplex mode of the LINC
Standard, the keyboard and the printer operate independently. The
program is typed out only if the LINC is instructed to "echo back.'

In this mode, the teletype may send and receive simultaneously.

From Table 1, it would seem that our programs may be used on
those machines which employ the LINC Standard by simply changing all
instructions to load BRo to do just the complement. This is indeed
the case. As an alternative, we have developed a simple circuit which

enables the user to select the IRL connection or the LINC Standard

82

by a single throw of a toggle switch mounted on the front panel of a
terminal frame plug-in unit. Thus either software may be used. This
circuit is shown in Figure 1, mounted on a blank DEC card of the

4000 series. Figure 2 is a block diagram of the circuit.

Those unfamiliar with the teletype who are planning the hookup
would do well to follow the instructions in Bulletin #6 (previously
referred to) in ordering the teletype unit. This precaution will
minimize the difficulties in making the proper connections. The
steps are outlined clearly in the Bulletin, which makes reference to
Teletype Drawing 6353 WD. In our case, we discovered that our unit is
a stripped down version of the unit described by Drawing 6353 WD. To
help those in similar situations, we have drawn an abbreviated

schematic (Figure 3) which details the essential connections.

83

.m i #KE o ISIMYH3HLO
! “ Q31403dS JYIHM Ld30X3
| ——_ ! ‘L LVM 35V SHOLSISZY
] mivozz ! NOJMIS 34V S3000 TV
| . m
| GOEINZ m
bl Oll-E4IX NONNVO
m " N\ ~
_ — < | < >
w] az |V [V TV
w ; XOVE | 2 \) umu \ £ 3Wnol4 335
| m N33 | € ~ N
AOl+ ———%— ! 5 i
v | (01X)628
m m QUVANVLS ONIT
M—gT T ! I8 smemmn__\
m SOEINZ _ o
" m 1INN NI=9NTd
m “ INVYS TYNIWY3L 40 ¥v3Y
; “
m nel m Tl
" |
ASI-— Aw * m
“ m HOLIMS 4719901 40 dIT4d X9 FIVMIIOS IVANVIS ONI'1

¥0 IYVMIAOS TII 40 ISN ONILLIWYEd IINDYID
T 0914

LINC STANDARD

A
|
|
|
|
|

N

|
|:L TELETYPE
BRO - RECEIVE
XLO———¢——
TELETYPE
SEND

FIGURE 2
A BLOCK DIAGRAM OF FIGURE 1 USING NOR GATES.

85

1Y4VLS

w& X X X X K X X X
NOWWOD QUVO8BAI /

SL1OVLNOD
QUVOEA
1 39n9id 33S

||_ all P1-cH1X NONNVO
|

*Xd1dNa TIind

do1s

ON3s rmmmmmmmmmmmmmmooooo- Nﬂil» ||||| A
: |
" Y3IAING LINOVWN 280 _
“ ¥OLD313S 3HL 40 (3" !
| OLVW3HOS VLNV 2p< VSEl |
_ L 10z NS o _
| |
| |
| ® |
“ONIT EHL OL dNNOOH @dALITHL 0'Gp- !
€ TUNOIA ! m

)
! VOEE "
| ™o 2

APPENDIX B

The Calcomp Model 565 Digital Incremental Plotter, an extremely
useful tool, is easily connected to the LINC. Our own connection,
which we term the "IRL" is described in Figure 1 of this appendix.
Another connection, which we will call the "LINC Standard," is
described in Information Bulletin #4, issued April 27, 1964 by the
Massachusetts Institute of Technology. The address given for

inquiries was:

S. M. Ornstein

M.I.T. Center Development Office
292 Main Street

Cambridge, Massachusetts 02142

The Calcomp 565 accepts 6 types of commands:

(1) Drum Up

(2) Drum Down

(3) Carriage Right
(4) Carriage Left
(5) Pen Up

(6) Pen Down

The LINC Standard uses a separate OPR line for each of these commands.
Our configuration was adopted for the purpose of saving OPR lines for
other functions. It also saves a small amount of programming in

plotting lines at 45 degrees, although this was not an objective.

To run the Calcomp in the IRL connection, one loads the

accumulator with the proper code and execute8 an OPR 0.

87

(LNNOW T3NVd) 8vV-80£d 1220-80€-S

SINOF HONID S3NOT HONID 378v
— j
ﬁ 1377 39VINNYD
2 8
1HOIN 3OVINYYD
£ — S
4N WNNa
v NMOO NNNa s
s | v " (696 dNODTVD 40
o L d 2 ¥V3Y¥ OLNI SONd)
NMOG N3d 2
i ‘ON9 SISSVH v i-012 6148
e L gl NONNYJ
‘ON9 1INJNID
a
+||» &b
1 s z A Svo
X _
> €0
¥ d 'y A vy
n _
¢ > > 1)
N w L s _ Evo
ﬁ Y]
¢ > > > e}
1] d N Zyo
* n
N N N N
> P80
[1 [¢ | suatuaann | ® 7| (saivo onwn | lvo
699! Sy ¢ 19
: o
4 030 3 H 230 . ve
3
L [+74:]
CORI'L 3NL O $9S 4RUDTIVY JHL 40 NOTLIANNGD NI o&o
1 480913
Asi- N (aan) 2 1IN0 NI-9NWd

wel
3NVHY TYNINYEL 40 ¥V3IY

"ONIT FHL OL §9S dWOJTIVD dHL 40 NOILOANNOD THI
T TANO14

88

The codes are as follows:
COMMAND OCTAL CODE

Carriage Left 1
Carriage Right

Drum Up 4
Drum Down : 10
Pen Up 20
Pen Down 40

89

BIBLIOGRAPHY

Fisher, R. A., Statistical Methods for Research Workers, 11th Ed.,
Oliver and Boyd (1950).

Moore, Richard K., An Operating System for the LINC Computer,
NASA Technical Report No. IRL-1038, Instrumentation Research
Laboratory, Genetics Department, Stanford University, Palo Alto,
California (1965).

LINC, Programming and Use I, Vol. 16, Washington University (1965).

90

